Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39052323

RESUMO

Two Gram-stain-negative, rod-shaped, non-motile, aerobic and carotenoid-producing strains, belonging to the family Erythrobacteraceae, designated as H149T and Z2T, were isolated from tidal flat sediment samples collected in Hainan and Zhejiang, PR China, respectively. Growth of strain H149T occurred at 15-42 °C, 0-10.0 % (w/v) NaCl, and pH 6.0-8.5, with the optima at 35-37 °C, 3.0-3.5 % (w/v) NaCl and pH 7.0. Strain Z2T grew at 15-37 °C, 0-6.0 % (w/v) NaCl, and pH 6.0-9.5, with the optima at 25-30 °C, 0.5-1.0 % (w/v) NaCl and pH 6.0-6.5. Ubiquinone-10 was the sole ubiquinone in two strains. The predominant cellular fatty acids of strain H149T were C16 : 0, summed feature 3 and summed feature 8, while those of strain Z2T were C17 : 1 ω6c, summed feature 3 and summed feature 8. Strains H149T and Z2T shared diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as major polar lipids. The 16S rRNA gene sequence identity analysis indicated that strain H149T had the highest sequence identity of 98.4 % with Aurantiacibacter odishensis KCTC 23981T, and strain Z2T had that of 98.2 % with Qipengyuania pacifica NZ-96T. Phylogenetic trees based on 16S rRNA gene and core-genome sequences revealed that strains H149T and Z2T formed two independent clades in the genera Aurantiacibacter and Qipengyuania, respectively. Strain H149T had average nucleotide identity values of 74.0-81.3 % and in silico DNA-DNA hybridization values of 18.5-23.1 % with Aurantiacibacter type strains, while strain Z2T had values of 73.3-78.7 % and 14.5-33.3 % with Qipengyuania type strains. The genomic DNA G+C contents of strains H149T and Z2T were 64.3 and 61.8 %, respectively. Based on the genetic, genomic, phylogenetic, physiological and chemotaxonomic results, strains H149T (=KCTC 8397T=MCCC 1K08920T) and Z2T (=KCTC 8396T=MCCC 1K08946T) are concluded to represent two novel Erythrobacteraceae species for which the names Aurantiacibacter hainanensis sp. nov. and Qipengyuania zhejiangensis sp. nov. are proposed, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Ubiquinona , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , China , DNA Bacteriano/genética , Água do Mar/microbiologia , Fosfolipídeos
2.
Rapid Commun Mass Spectrom ; 38(5): e9699, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355881

RESUMO

RATIONALE: During the detection of volatile organic compounds (VOC) using high-field asymmetric waveform ion mobility spectrometry (FAIMS), the ambient temperature significantly impacts the accuracy of planar FAIMS. To mitigate the influence of ambient temperature on detection accuracy and enhance resolution, a FAIMS system based on the inner impedance characteristics of a printed circuit board (PCB) was designed for temperature control. METHODS: This study, conducted under standard atmospheric pressure, aimed to assess the signal stability of a planar FAIMS instrument with and without temperature control, and the effect of temperature change on the detection ability of acetone, ethanol, and their mixture was studied using PCB self-heating. RESULTS: Experimental results demonstrated that the base noise in FAIMS with temperature control was 0.2 pA, whereas that in FAIMS without temperature control was 1.8 pA. Notably, with increasing temperature, the detection ability of FAIMS changes accordingly. The optimal relative detection ability of acetone was observed when the electrode plate was heated to 45°C under an electric field of 15 kV/cm. CONCLUSIONS: This study provides a novel approach to improve the resolving power of FAIMS systems and their signal-to-noise ratio. The utilization of a PCB-based temperature control proved effective in stabilizing FAIMS signal characteristics and optimizing detection capabilities, particularly for VOCs such as acetone. These findings have significant implications for improving the accuracy and resolving power of FAIMS systems in VOC detection applications.

3.
Can J Neurol Sci ; : 1-8, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360745

RESUMO

OBJECTIVE: Language is one of the most celebrated hallmarks of human cognition. With the continuous improvement of medical technology, functional MRI (fMRI) has been used in aphasia. Although many related studies have been carried out, most studies have not extensively focused on brain regions with reduced activation in aphasic patients. The aim of this study was to identify brain regions normally activated in healthy controls but with reduced activation in aphasic patients during fMRI language tasks. METHODS: We collected all previous task-state fMRI studies of secondary aphasia. The brain regions showed normal activation in healthy controls and reduced activation in aphasic patients were conducted activation likelihood estimation (ALE) meta-analysis to obtain the brain regions with consistently reduced activation in aphasic patients. RESULTS: The ALE meta-analysis revealed that the left inferior frontal gyrus, left middle temporal gyrus, left superior temporal gyrus, left fusiform gyrus, left lentiform nucleus and the culmen of the cerebellum were the brain regions with reduced activation in aphasic patients. DISCUSSION: These findings from the ALE meta-analysis have significant implications for understanding the language network and the potential for recovery of language functions in individuals with aphasia.

4.
BMC Pulm Med ; 24(1): 225, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724980

RESUMO

OBJECTIVE: To explore the potential association between dietary live microbes and the prevalence of Chronic Obstructive Pulmonary Diseases (COPD). METHODS: In this cross-sectional study, data of 9791 participants aged 20 years or older in this study were collected from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018. Participants in this study were classified into three groups according to the Sanders' dietary live microbe classification system: low, medium, and high dietary live microbe groups. COPD was defined by a combination of self-reported physician diagnoses and standardized medical status questionnaires. Logistic regression and subgroup analysis were used to assess whether dietary live microbes were associated with the risk of COPD. RESULTS: Through full adjustment for confounders, participants in the high dietary live microbe group had a low prevalence of COPD in contrast to those in low dietary live microbe group (OR: 0.614, 95% CI: 0.474-0.795, and p < 0.001), but no significant association with COPD was detected in the medium and the low dietary live microbe groups. This inverse relationship between dietary live microbe intake and COPD prevalence was more inclined to occur in smokers, females, participants aged from 40 to 59 years old and non-obese participants. CONCLUSION: A high dietary live microbe intake was associated with a low prevalence of COPD, and this negative correlation was detected especially in smokers, females, participants aged from 40 to 59 years old and non-obese participants.


Assuntos
Inquéritos Nutricionais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Transversais , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Prevalência , Dieta/estatística & dados numéricos , Idoso , Modelos Logísticos , Estados Unidos/epidemiologia , Fatores de Risco , Adulto Jovem , Fumar/epidemiologia
5.
Eur Arch Otorhinolaryngol ; 281(8): 4315-4324, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38642085

RESUMO

BACKGROUND: This retrospective study investigated the prognostic value of serum inflammatory markers in nasopharyngeal carcinoma (NPC) patients, focusing on their association with overall survival (OS) and liver metastasis-free survival (LMFS). METHODS: The study included 314 NPC patients treated between 2010 and 2020. Clinical characteristics, treatment methods, and serum inflammatory markers were assessed. Patients were categorized into two groups of with and without liver metastasis. Univariate and multivariate Cox regression and Kaplan-Meier survival analyses were performed to investigate the prognostic value of serum inflammatory markers in NPC patients with and without liver metastasis. RESULTS: In the whole cohort, univariate Cox regression analysis singled out tumor necrosis factor-α (TNF-α) (HR = 1.57, 95% CI 1.44-4.90, p = 0.004) and neutrophil-to-lymphocyte ratio (NLR) (HR = 2.13, 95% CI 1.33-3.99, p = 0.009), which were significantly associated with poorer OS. In patients with liver metastasis, TNF-α and NLR could not independently predict OS. However, high TNF-α levels were independently associated with worse OS in patients without liver metastasis (HR (95% CI) = 2.75 (1.67-8.68), p < 0.001). High NLR levels could independently predict poor OS in both groups with (HR (95% CI) = 1.94 (1.77-6.38), p = 0.010) and without liver metastasis (HR (95% CI) = 1.58 (1.19-7.54), p = 0.009). Ultimately, TNF-α and NLR could not significantly predict LMFS. CONCLUSION: This study highlights the prognostic significance of TNF-α and NLR in NPC patients, especially in those with liver metastasis. These inflammatory markers could serve as valuable indicators for assessing the prognosis of NPC patients. Further research is warranted to validate their clinical utility and explore potential therapeutic implications.


Assuntos
Biomarcadores Tumorais , Neoplasias Hepáticas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/mortalidade , Biomarcadores Tumorais/sangue , Adulto , Fator de Necrose Tumoral alfa/sangue , Neutrófilos , Idoso , Estimativa de Kaplan-Meier
6.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276628

RESUMO

Ultralong nanowires with ultrahigh aspect ratios exhibit high flexibility, and they are promising for applications in various fields. Herein, a cadmium oleate precursor hydrothermal method is developed for the synthesis of ultralong nanowires of cadmium phosphate hydroxide. In this method, water-soluble cadmium salt is used as the cadmium source, water-soluble phosphate is used as the phosphorus source, and sodium oleate is adopted as a reactant to form cadmium oleate precursor and as a structure-directing agent. By using this method, ultralong nanowires of cadmium phosphate hydroxide are successfully synthesized using CdCl2, sodium oleate, and NaH2PO4 as reactants in an aqueous solution by hydrothermal treatment at 180 °C for 24 h. In addition, a new type of flexible fire-resistant inorganic paper with good electrical insulation performance is fabricated using ultralong nanowires of cadmium phosphate hydroxide. As an example of the extended application of this synthetic method, ultralong nanowires of cadmium phosphate hydroxide can be converted to ultralong CdS nanowires through a convenient sulfidation reaction. In this way, ultralong CdS nanowires are successfully synthesized by simple sulfidation of ultralong nanowires of cadmium phosphate hydroxide under mild conditions. The as-prepared ultralong nanowires of cadmium phosphate hydroxide are promising for applications as the precursors and templates for synthesizing other inorganic ultralong nanowires and have wide applications in various fields.

7.
Angew Chem Int Ed Engl ; : e202416426, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305135

RESUMO

Sonocatalytic therapy (SCT) holds promise due to its exceptional penetration depth; however, the rapid recombination of electron-hole (e--h+) pairs and the complex tumor microenvironment (TME) impede its broader application. Herein, we discovered that antimony (Sb)-based nanomaterials induced pyroptosis in cancer cells. Therefore, a Schottky heterojunction containing a Sb component (Sb2Se3@Pt) was effectively designed and constructed via in-situ growth of platinum (Pt) nanoparticles (NPs) on a Sb2Se3 semiconductor with narrow bandgaps, which were utilized as US-heightened pyroptosis initiators to induce highly effective pyroptosis in cancer cells to boost SCT-immunotherapy. The biological effects of the Sb2Se3@Pt nanoheterojunction itself combined with the sonocatalytic amplification of oxidative stress significantly induced Caspase-1/GSDMD-dependent pyroptosis in cancer cells. Therefore, SCT treatment with Sb2Se3@Pt not only effectively restrained tumor proliferation but also induced potent immune memory responses and suppressed tumor recurrence. Furthermore, the integration of this innovative strategy with immune checkpoint blockade (ICB) treatment elicited a systemic immune response, effectively augmenting therapeutic effects and impeding the growth of abscopal tumors. Overall, this study provides further opportunities to explore pyroptosis-mediated SCT-immunotherapy.

8.
Small ; 19(5): e2206592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36437115

RESUMO

Starvation therapy kills tumor cells via consuming glucose to cut off their energy supply. However, since glucose oxidase (GOx)-mediated glycolysis is oxygen-dependent, the cascade reaction based on GOx faces the challenge of a hypoxic tumor microenvironment. By decomposition of glycolysis production of H2 O2 into O2 , starvation therapy can be enhanced, but chemodynamic therapy is limited. Here, a close-loop strategy for on demand H2 O2 and O2 delivery, release, and recycling is proposed. The nanoreactor (metal-protein-polyphenol capsule) is designed by incorporating two native proteins, GOx and hemoglobin (Hb), in polyphenol networks with zeolitic imidazolate framework as sacrificial templates. Glycolysis occurs in the presence of GOx with O2 consumption and the produced H2 O2 reacts with Hb to produce highly cytotoxic hydroxyl radicals (•OH) and methemoglobin (MHb) (Fenton reaction). Benefiting from the different oxygen carrying capacities of Hb and MHb, oxygen on Hb is rapidly released to supplement its consumption during glycolysis. Glycolysis and Fenton reactions are mutually reinforced by oxygen supply, consuming more glucose and producing more hydroxyl radicals and ultimately enhancing both starvation therapy and chemodynamic therapy. This cascade nanoreactor exhibits high efficiency for tumor suppression and provides an effective strategy for oxygen-mediated synergistic starvation therapy and chemodynamic therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Oxigênio , Polifenóis , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Metais , Radical Hidroxila , Glucose Oxidase/metabolismo , Glucose , Nanotecnologia , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Small ; 19(19): e2206917, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36793253

RESUMO

Solar energy-driven water evaporation is a promising sustainable strategy to purify seawater and contaminated water. However, developing solar evaporators with high water evaporation rates and excellent salt resistance still faces a great challenge. Herein, inspired by the long-range ordered structure and water transportation capability of lotus stem, a biomimetic aerogel with vertically ordered channels and low water evaporation enthalpy for high-efficiency solar energy-driven salt-resistant seawater desalination and wastewater purification is developed. The biomimetic aerogel consists of ultralong hydroxyapatite nanowires as heat-insulating skeletons, polydopamine-modified MXene as a photothermal material with broadband sunlight absorption and high photothermal conversion efficiency, polyacrylamide, and polyvinyl alcohol as reagents to lower the water evaporation enthalpy and as glues to enhance the mechanical performance. The honeycomb porous structure, unidirectionally aligned microchannels, and nanowire/nanosheet/polymer pore wall endow the biomimetic aerogel with excellent mechanical properties, rapid water transportation, and excellent solar water evaporation performance. The biomimetic aerogel exhibits a high water evaporation rate (2.62 kg m-2  h-1 ) and energy efficiency (93.6%) under one sun irradiation. The superior salt-rejecting ability of the designed water evaporator enables stable and continuous seawater desalination, which is promising for application in water purification to mitigate the global water crisis.

10.
FASEB J ; 36(10): e22549, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165177

RESUMO

Crohn's disease is a recurrent, progressive, immune-mediated inflammatory disease and merely manifests non-specific symptoms at early stage. In this study, we isolated peripheral blood mononuclear cells (PBMCs) to determine whether PBMC miRNAs are reliable biomarkers for Crohn's disease diagnosing and monitoring. 5 Crohn's disease patients and 5 healthy controls were recruited to find differentially expressed miRNAs by next generation sequencing. Candidate PBMC miRNAs were further validated by qRT-PCR in another cohort consisting of 86 Crohn's disease patients and 39 healthy controls. We found PBMC miR-582-5p could diagnose Crohn's disease with the area under receiver operating characteristic curve (AUROC) of 0.701(95%CI 0.606-0.796, p < .001). While PBMC miR-96-5p was significantly higher in active Crohn's disease and correlated with both clinical (ρ = 0.376, p < .001) and endoscopic activity (ρ = 0.512, p = .015). Furthermore, PBMC miR-96-5p had a better performance in recognizing active Crohn's disease with AUROC of 0.727 (95%CI 0.609-0.844, p = .001) than C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and fecal calprotectin. In conclusion, PBMC miR-582-5p may be further utilized as a diagnostic biomarker, while miR-96-5p may be a novel and valuable biomarker in monitoring disease activity.


Assuntos
Doença de Crohn , MicroRNAs , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Doença de Crohn/diagnóstico , Humanos , Complexo Antígeno L1 Leucocitário , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo
11.
Cell Commun Signal ; 21(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597090

RESUMO

BACKGROUND: The NLRP3 inflammasome activation is the molecular basis of Helicobacter pylori (Hp)-associated gastritis. Tripartite motif (TRIM) 31 is involved in diverse pathological events. However, whether TRIM31 plays a role in the activation of NLRP3 inflammasome in Hp infection is not clarified. METHODS: A mouse model of chronic Hp infection was established, and the gastric tissues were subjected to the polymerase chain reaction, western blotting, histopathological analysis, and RNA sequencing. The mitochondrial membrane potential and ROS in the human gastric epithelium GES-1 cells with or without Hp infection were measured by flow cytometry. GES-1 cells with or without TRIM31 knockdown were transfected with mCherry-EGFP-LC3 adenovirus. After rapamycin and bafilomycin A1 stimulation, autophagy flux in the above primed GES-1 cells was assessed by laser confocal microscope. Lysosomal acidification and expression levels of cathepsin B and cathepsin D in GES-1 cells with Hp infection were measured. RESULTS: NLRP3 inflammasome was activated in the gastric tissues of mice with chronic Hp infection in vivo and the GES-1 cells with Hp infection in vitro. TRIM31 was downregulated in Hp infection. TRIM31 negatively regulated the NLRP3 inflammasome activation. Enhanced ROS, impaired autophagy flux, and decreased expression of lysosomal cathepsin B and cathepsin D were observed in TRIM31-deficient GES-1 cells with Hp infection. In turn, inhibition of ROS led to the decreased expression of NLRP3 inflammasome. CONCLUSIONS: Together, our data identified that TRIM31 negatively regulated the activation of NLRP3 inflammasome in Hp-associated gastritis by affecting ROS and autophagy of gastric epithelial cells. Video abstract.


Assuntos
Gastrite , Helicobacter pylori , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitina-Proteína Ligases , Espécies Reativas de Oxigênio/metabolismo , Catepsina B , Helicobacter pylori/metabolismo , Catepsina D , Autofagia , Proteínas com Motivo Tripartido
12.
Inorg Chem ; 62(9): 3916-3928, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821293

RESUMO

Non-heterocyclic N-donor nitrilotriacetate-derived triamide ligands are one of the most promising extractants for the selective extraction separation of trivalent actinides over lanthanides, but the thermodynamics and mechanism of the complexation of this kind of ligand with actinides and lanthanides are still not clear. In this work, the complexation behaviors of N,N,N',N',N″,N″-hexaethylnitrilotriacetamide (NTAamide(Et)) with four representative trivalent lanthanides (La3+, Nd3+, Eu3+, and Lu3+) were systematically investigated by using 1H nuclear magnetic resonance (1H NMR), ultraviolet-visible (UV-vis) and fluorescence spectrophotometry, microcalorimetry, and single-crystal X-ray diffractometry. 1H NMR spectroscopic titration of La3+ and Lu3+ indicates that two species of 1:2 and 1:1 metal-ligand complexes were formed in NO3- and ClO4- media. The stability constants of NTAamide(Et) with Nd3+ and Eu3+ obtained by UV-vis and fluorescence titration show that the complexing strength of NTAamide(Et) with Nd3+ is lower than that with Eu3+ in the same anionic medium, while that of the same lanthanide complex is higher in ClO4- medium than in NO3- medium. Meanwhile, the formation reactions for all metal-ligand complexes are driven by both enthalpy and entropy. The structures of lanthanide complexes in the single ClO4- and NO3- medium and the mixed one were determined to be [LnL2(MeOH)](ClO4)3 (Ln = La, Nd, Eu, and Lu), [LaL2(EtOH)2][La(NO3)6], and [LaL2(NO3)](ClO4)2, separately. The average bond lengths of lanthanide complexes decrease gradually with the decrease in ionic radii of Ln3+, indicating that heavier lanthanides form stronger complexes due to the lanthanide contraction effect, which coincides with the trend of the complexing strength obtained by spectroscopic titration. This work not only reveals the thermodynamics and mechanism of the complexation between NTAamide ligands and lanthanides but also obtains the periodic tendency of complexation between them, which may facilitate the separation of trivalent lanthanides from actinides.

13.
J Pers Assess ; 105(1): 48-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35191813

RESUMO

Purpose in life is critical to positive development among youth, especially those purposes that focus on an aspect of the world beyond the self. However, existing instruments have not adequately assessed beyond-the-self purpose. The Claremont Purpose Scale addresses the purpose construct, measuring the goal orientation, personal meaningfulness, and beyond-the-self focus among youth in the United States. We developed a version of the scale for use in the Chinese context among youth. In our two-part study, Study 1 developed the preliminary scale, and Study 2 evaluated its validity and reliability. The results indicated this scale is valuable for the assessment of the purpose of Chinese youth, has theoretical and practical implications for the measurement of beyond-the-self purpose, and can contribute to Chinese youth purpose research and future cross-cultural studies.


Assuntos
Comparação Transcultural , População do Leste Asiático , Humanos , Adolescente , Psicometria , Reprodutibilidade dos Testes , Povo Asiático , Inquéritos e Questionários , China
14.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375170

RESUMO

Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Glucose Oxidase , Peróxido de Hidrogênio/análise , Oxirredução , Glucose/análise
15.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3701-3714, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475061

RESUMO

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-6
16.
Angew Chem Int Ed Engl ; 62(12): e202213922, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585379

RESUMO

Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cobre/farmacologia , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Ditiocarb , Neoplasias/tratamento farmacológico
17.
Angew Chem Int Ed Engl ; 62(46): e202313137, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37766426

RESUMO

To realize sensing and labeling biomarkers is quite challenging in terms of designing multimodal imaging probes. In this study, we developed a novel ß-galactosidase (ß-gal) activated bimodal imaging probe that combines near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) to enable real-time visualization of activity in living organisms. Upon ß-gal activation, Gal-Cy-Gd-1 exhibits a remarkable 42-fold increase in NIR fluorescence intensity at 717 nm, allowing covalent labeling of adjacent target enzymes or proteins and avoiding molecular escape to promote probe accumulation at the tumor site. This fluorescence reaction enhances the longitudinal relaxivity by approximately 1.9 times, facilitating high-resolution MRI. The unique features of Gal-Cy-Gd-1 enable real-time and precise visualization of ß-gal activity in live tumor cells and mice. The probe's utilization aids in identifying in situ ovarian tumors, offering valuable assistance in the precise removal of tumor tissue during surgical procedures in mice. The fusion of NIR fluorescence and MRI activation through self-immobilizing target enzymes or proteins provides a robust approach for visualizing ß-gal activity. Moreover, this approach sets the groundwork for developing other activatable bimodal probes, allowing real-time in vivo imaging of enzyme activity and localization.


Assuntos
Neoplasias , Camundongos , Animais , Fluorescência , beta-Galactosidase/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Óptica/métodos
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1150-1155, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37990460

RESUMO

OBJECTIVES: To investigate the expression and significance of jumonji domain-containing protein 2B (JMJD2B) and hypoxia-inducible factor-1α (HIF-1α) in non-Hodgkin's lymphoma (NHL) tissues in children. METHODS: Immunohistochemistry was used to detect the expression of JMJD2B and HIF-1α in lymph node tissue specimens from 46 children with NHL (observation group) and 24 children with reactive hyperplasia (control group). The relationship between JMJD2B and HIF-1α expression with clinicopathological characteristics and prognosis in children with NHL, as well as the correlation between JMJD2B and HIF-1α expression in NHL tissues, were analyzed. RESULTS: The positive expression rates of JMJD2B (87% vs 21%) and HIF-1α (83% vs 42%) in the observation group were higher than those in the control group (P<0.05). The expression of JMJD2B and HIF-1α was correlated with serum lactate dehydrogenase levels and the risk of international prognostic index in children with NHL (P<0.05). The expression of JMJD2B was positively correlated with the HIF-1α expression in children with NHL (rs=0.333, P=0.024). CONCLUSIONS: JMJD2B and HIF-1α are upregulated in children with NHL, and they may play a synergistic role in the development of pediatric NHL. JMJD2B can serve as a novel indicator for auxiliary diagnosis, evaluation of the severity, treatment guidance, and prognosis assessment in pediatric NHL.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Linfoma não Hodgkin , Humanos , Criança , Prognóstico , Hipóxia
19.
Anal Chem ; 94(11): 4794-4802, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35266710

RESUMO

Investigating multiple miRNA expression patterns in living cells by DNA logic biocomputing is a valuable strategy for diagnosis and biomedical studies. The introduction of protein enzymes in DNA logic biocomputing circuits not only expands the toolbox of nucleic acid assembly techniques, but also further improves the specificity of recognizing and processing of DNA input. Herein, a polymerase-driven primer exchange reaction, acting as the sensing module, is introduced into the biocomputing system and transduces the multiple miRNAs sensing event into the intermediate triggers for activating the subsequent processing module, which further performs signal readout through DNAzyme catalytic substrate cleavage reaction. By using biomineralized zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) to deliver all the components of the biocomputing system, including polymerase and DNA probes, we realized polymerase-driven DNA biocomputing operations in living cells, including AND and OR gates. The results exhibited that biomineralized ZIF-8 NPs can protect the loaded cargoes against the external environment and deliver them efficiently to the cytoplasm. The polymerase-driven DNA biocomputing system based on multiple miRNAs sensing can be used for reliable cell identification and may provide a promising platform for more accurate diagnosis and programmable therapeutics.


Assuntos
DNA Catalítico , MicroRNAs , Nanopartículas , Zeolitas , DNA
20.
Rev Cardiovasc Med ; 23(11): 372, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39076182

RESUMO

Background: The role of soluble interleukin-1 receptor type 2 (sIL-1R2) in acute myocardial infarction (AMI) remains undocumented. In the present study, we aimed to evaluate the possible associations of sIL-1R2 with left ventricular (LV) function, remodeling and future clinical events in the setting of AMI. Methods: Circulating sIL-1R2 levels were quantified after percutaneous coronary intervention (PCI) on day 1 of hospital admission for 204 AMI patients, and upon enrollment of 204 healthy controls. Echocardiography was conducted in the acute phase and at 12-month follow-up. Adverse clinical events were registered after 12 months. Results: Circulating sIL-1R2 levels were significantly higher in AMI patients than in healthy controls (medians respectively 6652.81 pg/mL, 3799.13 pg/mL, p < 0.0001). AMI patients with sIL-1R2 levels less than the median had a larger proportion of worsened LV ejection fraction [a decrease in LV ejection fraction (LVEF) of more than 10% units] and reduced LVEF (a final LVEF < 50%). After multivariate adjustment, sIL-1R2 levels less than the median were associated with an increased risk of worsened LVEF [odds ratio (OR): 3.7, 95% confidence interval (CI): 1.6-8.5, p = 0.002] and reduced LVEF at 12 months (OR: 2.1, 95% CI: 1.1-4.3, p = 0.035). Moreover, low sIL-1R2 levels were associated with an increased risk of having an adverse clinical event during the first 12 months after AMI [hazard ratio (HR): 2.5, 95% CI: 1.0-6.1, p = 0.039]. Conclusions: Low levels of circulating sIL-1R2 were associated with impaired recovery of LV function and adverse clinical outcomes in AMI patients. These findings might contribute to understanding the important role of sIL-1R2 in postinfarction inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa