RESUMO
PURPOSE: To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. METHODS: MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of T1 and T2∗ in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T1 and T2∗ parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the T1 and T2∗ parametric maps, and the WM and GM probability maps. RESULTS: Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for T1 (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for T2∗ (deviations 6.0%). CONCLUSIONS: MRF is a fast and robust tool for quantitative T1 and T2∗ mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.