Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(33): 13135-13144, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34313429

RESUMO

Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel membrane featuring ordered undulating stripes called "Turing patterns", which can effectively suppress zinc dendrites and improve ion conductivity. The crests and troughs in the Turing membrane can effectively adjust the Zn(OH)42- distribution and provide more zinc deposition space. The coordinated Cu ions during membrane formation can interact with Zn(OH)42-, further smoothing zinc deposition. Even at a high current density of 80 mA·cm-2, the Turing membrane enables an alkaline zinc-iron flow battery (AZIFB) to work stably with an ultrahigh areal capacity of 160 mA·h·cm-2 for approximately 110 cycles, showing an energy efficiency of 90.10%, which is by far the highest value ever reported among zinc-based batteries with such a high current density. This paper provides valid access to zinc-based batteries with high areal capacities based on membrane design and promotes their advancement.

2.
Sci Bull (Beijing) ; 66(9): 889-896, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654237

RESUMO

Aqueous zinc-based batteries (ZBBs) have great potential as commercial energy storage devices. However, the poor cycling stability of zinc anode under high areal capacity limits their further application. Herein, a coupled non-planar electrode design achieved by the tailored flat-top pyramid carbon felt (TCF) is proposed for ZBBs, which can effectively increase the zinc deposition sites, adjust the deposition morphology, optimize the current and electrolyte flow velocity distribution and provide necessary space for zinc plating. Interestingly, by utilizing "tip effect", the coupled TCFs enable precise control of the zinc dendrite growth position, effectively reducing the risk of short circuit. Based on such coupled TCFs, zinc-iodine flow batteries can deliver an ultra-high areal capacity of 240 mAh cm-2 and a superb cycling stability over 300 cycles (areal capacity of 160 mAh cm-2) at a high current density of 40 mA cm-2. Therefore, we provide an effective strategy for high areal capacity zinc anode design, which may promote the development of high energy density and long cycle life ZBBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa