Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Genet ; 18(9): e1010411, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36112661

RESUMO

Fecundity is arguably one of the most important life history traits, as it is closely tied to fitness. Most arthropods are recognized for their extreme reproductive capacity. For example, a single female of the oriental fruit fly Bactrocera dorsalis, a highly invasive species that is one of the most destructive agricultural pests worldwide, can lay more than 3000 eggs during its life span. The ovary is crucial for insect reproduction and its development requires further investigation at the molecular level. We report here that miR-309a is a regulator of ovarian development in B. dorsalis. Our bioinformatics and molecular studies have revealed that miR-309a binds the transcription factor pannier (GATA-binding factor A/pnr), and this activates yolk vitellogenin 2 (Vg 2) and vitellogenin receptor (VgR) advancing ovarian development. We further show that miR-309a is under the control of juvenile hormone (JH) and independent from 20-hydroxyecdysone. Thus, we identified a JH-controlled miR-309a/pnr axis that regulates Vg2 and VgR to control the ovarian development. This study has further enhanced our understanding of molecular mechanisms governing ovarian development and insect reproduction. It provides a background for identifying targets for controlling important Dipteran pests.


Assuntos
MicroRNAs , Tephritidae , Animais , Drosophila/metabolismo , Ecdisterona/metabolismo , Feminino , Hormônios Juvenis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Fatores de Transcrição/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
2.
BMC Biol ; 21(1): 187, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667263

RESUMO

BACKGROUND: The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS: Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS: We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.


Assuntos
Inseticidas , MicroRNAs , Humanos , Animais , Inseticidas/farmacologia , Malation/farmacologia , Pele , Agricultura , Drosophila , MicroRNAs/genética
3.
Insect Mol Biol ; 31(6): 772-781, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35860987

RESUMO

The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.


Assuntos
Proteínas de Insetos , Tephritidae , Animais , Proteínas de Insetos/metabolismo , Dessecação , Tephritidae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarbonetos/metabolismo , Drosophila/genética , Água
4.
Pestic Biochem Physiol ; 188: 105285, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464328

RESUMO

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.


Assuntos
Hormônios Juvenis , Tephritidae , Animais , Hormônios Juvenis/farmacologia , Interferência de RNA , Metiltransferases/genética , Drosophila melanogaster , Tephritidae/genética , Drosophila , Larva/genética
5.
Pestic Biochem Physiol ; 138: 76-83, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28456308

RESUMO

Acetylcholinesterase (AChE) is the primary target of organophosphate- and carbamate-based insecticides. We sequenced the full-length cDNAs of two AChE genes from the brown citrus aphid Aphis (Toxoptera) citricidus (Kirkaldy). These two genes, Tcace1 and Tcace2, which encode TcAChE1 and TcAChE2, respectively, had a shared amino acid identity of 29% and were highly similar to other insect ace1 and ace2 genes, respectively, having specific functional motifs. Potential differences in enzymatic function were characterized by the heterologous expression of the two genes using a baculovirus system in Sf9 insect cells. Both of the recombinant AChEs had high specific activities for three typical substrates, acetylthiocholine iodide, butyrylthiocholine iodide, and propinylthiocholine iodide. TcAChE1 had a lower Michaelis-Menten constant value and a higher maximal reaction velocity than recombinant TcAChE2, indicating a higher affinity for substrates and greater catalytic efficiency, respectively. Bioassays showed a greater sensitivity of recombinant TcAChE1 to the 10 tested insecticides. Silencing of Tcace1 and Tcace2 by RNA interference significantly increased the susceptibility of A. citricidus to malathion and carbaryl; however, silencing Tcace1 resulted in a higher mortality rate than silencing Tcace2. Additionally, the specific enzyme activity decreased more after silencing Tcace1 than after silencing Tcace2. Thus, TcAChE1 plays a major role in postsynaptic neurotransmission in A. citricidus.


Assuntos
Acetilcolinesterase/metabolismo , Afídeos/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Acetilcolinesterase/genética , Sequência de Aminoácidos , Animais , Afídeos/genética , Afídeos/metabolismo , Carbamatos/farmacologia , Clonagem Molecular , DNA Complementar , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Organofosfatos/farmacologia , Filogenia , Interferência de RNA
6.
Pestic Biochem Physiol ; 142: 59-66, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29107248

RESUMO

Insect ryanodine receptors are the main targets of diamide insecticides that have highly selective insecticidal activity but are less toxic to mammals. Therefore, these insecticides are ideal for pest control. Ryanodine receptors (RyRs) play a critical role in Ca2+ signaling in muscle and non-muscle cells. In this study, we cloned the complete cDNA (DcRyR) of the RyR from the citrus whitefly, Dialeurodes citri, a serious pest of citrus orchards in China. The open reading frame of RyR is 15,378bp long and encodes a protein with 5126 amino acids with a computed molecular weight of 579.523kDa. DcRyR shows a high amino acid sequence identity to RyRs from other insects (76%-95%) and low identity to those from nematodes and mammals (44%-52%). DcRyR shares many features of insect and vertebrate RyRs, including a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeat domain, RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands and six transmembrane domains at the C-terminus. The expression of DcRyR mRNA was the highest in the nymphs and lowest in eggs; DcRyR mRNA was 1.85-fold higher in the nymphs than in the eggs. Among the tissues, DcRyR mRNA expression was 4.18- and 4.02-fold higher in the adult head and thorax than in the abdomen. DcRyR had three alternative splice sites and the splice variants showed body part-specific expression and were developmentally regulated. These results may help investigate target-based resistance to diamide insecticides in D. citri.


Assuntos
Processamento Alternativo , Hemípteros/genética , Proteínas de Insetos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Clonagem Molecular , Hemípteros/química , Hemípteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
7.
Int J Mol Sci ; 16(7): 15220-34, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26154764

RESUMO

Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action.


Assuntos
Processamento Alternativo , Afídeos/genética , Proteínas de Insetos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequência de Aminoácidos , Animais , Afídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Exp Appl Acarol ; 67(1): 49-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063404

RESUMO

Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress.


Assuntos
Proteínas de Artrópodes/genética , Superóxido Dismutase/genética , Tetranychidae/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Tetranychidae/metabolismo
9.
Pest Manag Sci ; 80(3): 1258-1265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37889506

RESUMO

BACKGROUND: The citrus red mite, Panonychus citri (McGregor), a global pest of citrus, has developed different levels of resistance to various acaricides in the field. Abamectin is one of the most important insecticides/acaricides worldwide, targetting a wide number of insect and mite pests. The evolution of abamectin resistance in P. citri is threatening the sustainable use of abamectin for mite control. RESULTS: The abamectin resistant strain (NN-Aba), derived from a field strain NN by consistent selection with abamectin, showed 4279-fold resistance to abamectin compared to a relatively susceptible strain (SS) of P. citri. Cross-resistance of NN-Aba was observed between abamectin and emamectin benzoate, pyridaben, fenpropathrin and cyflumetofen. Inheritance analyses indicated that abamectin resistance in the NN-Aba strain was autosomal, incompletely recessive and polygenic. The synergy experiment showed that abamectin toxicity was synergized by piperonyl butoxide (PBO), diethyl maleate (DEM) and tributyl phosphorotrithiotate (TPP) in the NN-Aba strain, and synergy ratios were 2.72-, 2.48- and 2.13-fold, respectively. The glutathione-S-transferases activity in the NN-Aba strain were significantly increased by 2.08-fold compared with the SS strain. CONCLUSION: The abamectin resistance was autosomal, incompletely recessive and polygenic in P. citri. The NN-Aba strain showed cross-resistance to various acaricides with different modes of action. Metabolic detoxification mechanism participated in abamectin resistance in NN-Aba strain. These findings provide useful information for resistance management of P. citri in the field. © 2023 Society of Chemical Industry.


Assuntos
Acaricidas , Citrus , Ivermectina/análogos & derivados , Ácaros , Tetranychidae , Animais , Acaricidas/farmacologia
10.
Insect Sci ; 31(2): 354-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37641867

RESUMO

Panonychus citri McGregor (Acari: Tetranychidae), a destructive citrus pest, causes considerable annual economic losses due to its short lifespan and rapid resistance development. MicroRNA (miRNA)-induced RNA interference is a promising approach for pest control because of endogenous regulation of pest growth and development. To search for miRNAs with potential insecticidal activity in P. citri, genome-wide analysis of miRNAs at different developmental stages was conducted, resulting in the identification of 136 miRNAs, including 73 known and 63 novel miRNAs. A total of 17 isomiRNAs and 12 duplicated miRNAs were characterized. MiR-1 and miR-252-5p were identified as reference miRNAs for P. citri and Tetranychus urticae. Based on differential expression analysis, treatments with miR-let-7a and miR-315 mimics and the miR-let-7a antagomir significantly reduced the egg hatch rate and resulted in abnormal egg development. Overexpression or downregulation of miR-34-5p and miR-305-5p through feeding significantly decreased the adult eclosion rate and caused molting defects. The 4 miRNAs, miR-let-7a, miR-315, miR-34-5p, and miR-305-5p, had important regulatory functions and insecticidal properties in egg hatching and adult eclosion. In general, these data advance our understanding of miRNAs in mite biology, which can assist future studies on insect-specific miRNA-based green pest control technology.


Assuntos
Inseticidas , MicroRNAs , Ácaros , Tetranychidae , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Interferência de RNA
11.
Pest Manag Sci ; 79(3): 996-1004, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36318043

RESUMO

BACKGROUND: Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS: Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION: The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.


Assuntos
Acaricidas , Piridazinas , Tetranychidae , Animais , Acaricidas/farmacologia , China
12.
Insect Sci ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650774

RESUMO

Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and ß-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.

13.
Pest Manag Sci ; 79(2): 666-677, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36223172

RESUMO

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel) is a worldwide pest damaging a wide range of hosts. Due to the long-term indiscriminate use of insecticides, B. dorsalis has developed serious resistance to several insecticides. UDP-glycosyltransferases (UGTs) are secondary metabolic enzymes involved in biotransformation and play an important role in the metabolism of plant secondary metabolites and synthetic insecticides in insects. Thus, we suspect that UGTs in B. dorsalis play an important role in insecticide tolerance. RESULTS: In this study, 31 UGT genes were identified in the genome of B. dorsalis, belonging to 13 subfamilies. Real-time quantitative polymerase chain reaction (RT-qPCR) results revealed that 12 UGT genes were highly expressed in the antennae, midgut, Malpighian tubule and fat body. The mRNA expressions of 17 UGT genes were up-regulated upon exposure to λ-cyhalothrin, imidacloprid, abamectin and chlorpyrifos. Knockdown of the selected five UGT genes (BdUGT301D2, BdUGT35F2, BdUGT36K2, BdUGT49D2, BdUGT50B5) by RNA interference increased the mortality of B. dorsalis from 9.29% to 27.22% upon exposure to four insecticides. CONCLUSION: The abundance of UGTs in B. dorsalis is similar to other insect species, and 12 out of 31 UGTs were specifically expressed in metabolic tissues, suggesting a key role in detoxification. Down-regulation of five selected UGT genes increased the susceptibility of B. dorsalis to various insecticides, indicating that UGTs may play an important role in tolerance of B. dorsalis to multiple insecticides. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Tephritidae , Animais , Inseticidas/farmacologia , Difosfato de Uridina , Insetos/metabolismo , Drosophila , Glicosiltransferases/genética
14.
J Agric Food Chem ; 71(22): 8400-8412, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246803

RESUMO

The oriental fruit fly, Bactrocera dorsalis, is a damaging insect pest for many vegetable and fruit crops that has evolved severe chemical insecticide resistance, including organophosphorus, neonicotinoid, pyrethroid, and macrolides. Hence, it is important to elucidate its detoxification mechanism to improve its management and mitigate resource destruction. Glutathione S-transferase (GST) is a critical secondary phase enzyme that plays multiple detoxification functions against xenobiotics. In this study, we identified several BdGSTs by characterizing their potential relationships with five insecticides using inducible and tissue-specific expression pattern analyses. We found that an antenna-abundant BdGSTd8 responded to four different classes of insecticides. Subsequently, our immunohistochemical and immunogold staining analysis further confirmed that BdGSTd8 was primarily located in the antenna. Our investigations also confirmed that BdGSTd8 possesses the capability to enhance cell viability by directly interacting with malathion and chlorpyrifos, which clarified the function of antenna-abundant GST in B. dorsalis. Altogether, these findings enrich our understanding of GST molecular characteristics in B. dorsalis and provide new insights into the detoxification of superfluous xenobiotics in the insect antenna.


Assuntos
Inseticidas , Tephritidae , Animais , Inseticidas/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Xenobióticos , Compostos Organofosforados , Tephritidae/genética , Tephritidae/metabolismo
15.
J Agric Food Chem ; 70(42): 13554-13562, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36224100

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorß1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorß1 shows high identities to other insect nAChRs ß1 subunits. Double injection of dsBdorß1 reduced the expression of Bdorß1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorß1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.


Assuntos
Inseticidas , Receptores Nicotínicos , Tephritidae , Animais , Inseticidas/química , Receptores Nicotínicos/metabolismo , Nitrocompostos/metabolismo , Acetilcolina , DNA Complementar , Neonicotinoides/farmacologia , Neonicotinoides/química , Colinérgicos , Tephritidae/genética , Tephritidae/metabolismo
16.
Pest Manag Sci ; 77(9): 3921-3933, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33884743

RESUMO

BACKGROUND: With the development of rapid resistance, new modes of action for pesticides are needed for insect control, such as RNAi-based biopesticides targeting essential genes. To explore the function of Argonaute-1 (Ago-1) and potential miRNAs in ovarian development of Bactrocera dorsalis, an important agricultural pest, and to develop a novel control strategy for the pest, BdAgo-1 was first identified in B. dorsalis. RESULTS: Spatiotemporal expression analysis indicated that BdAgo-1 had a relatively high transcriptional level in the ovarian tissues of adult female B. dorsalis during the sexual maturation period. RNA interference (RNAi) experiment showed that BdAgo-1 knockdown significantly decreased the expression levels of ovarian development-related genes and delayed ovarian development. Although RNAi-mediated silencing of Ago-1 led to a reduced ovary surface area, a subsequent oviposition assay revealed that the influence was minimal over a longer time period. Small RNA libraries were constructed and sequenced from different ovarian developmental stages of B. dorsalis adults. Among 161 identified miRNAs, 84 miRNAs were differentially expressed during the three developmental stages of the B. dorsalis ovary. BdAgo-1 silencing caused significant down-regulation of seven differentially expressed miRNAs (DEMs) showing relatively high expression levels (>1000 TPM (Transcripts per kilobase of exon model per million mapped reads)). The expression patterns of these seven core DEMs and their putative target genes were analyzed in the ovaries of B. dorsalis. CONCLUSION: The results indicate that Ago-1 and Ago-1-dependent miRNAs are indispensable for normal ovarian development in B. dorsalis and help identify miRNA targets useful for control of this pest.


Assuntos
Tephritidae , Animais , Sequência de Bases , Drosophila , Feminino , Interferência de RNA , Maturidade Sexual , Tephritidae/genética
17.
Pest Manag Sci ; 77(5): 2292-2301, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33423365

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS: RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION: LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , RNA Longo não Codificante , Tephritidae , Animais , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malation/farmacologia , Masculino , RNA Longo não Codificante/genética , Tephritidae/genética
18.
Pest Manag Sci ; 77(2): 677-685, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073914

RESUMO

BACKGROUND: The Asian citrus psyllid Diaphorina citri has developed high levels of resistance to many insecticides, and understanding its resistance mechanism will aid in the chemical control of this species. Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is crucial in cytochrome P450 function, and in some insects CPR knockdown has increased their susceptibility to insecticides. However, the CPR from D. citri has not been characterized and its function is undescribed. RESULTS: The CPR gene of D. citri (DcCPR) was cloned and sequenced. The expression level of DcCPR, determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis, was highest in the midgut and in nymphs. After feeding on double-stranded RNA for 72 h, the DcCPR messenger RNA level in D. citri adults decreased by 68.4%, and the susceptibility of D. citri to imidacloprid and thiamethoxam significantly increased. Meanwhile, after DcCPR silencing, the specific activities of DcCPR protein and P450s were significantly reduced by 41.6% and 44.7%, respectively. The subsequent western blot analysis and quantification of band intensity also showed that DcCPR content significantly decreased, consistent with the results of the specific activity test. In a eukaryotic expression assay, the viability of cells expressing DcCPR was significantly higher than the viability of cells expressing green fluorescent protein (GFP) when cells were exposed to imidacloprid or thiamethoxam. CONCLUSION: These results indicate that DcCPR contributes to D. citri susceptibility to imidacloprid and thiamethoxam.


Assuntos
Citrus , Hemípteros , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450/genética , Hemípteros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , NADPH-Ferri-Hemoproteína Redutase/genética , Neonicotinoides , Nitrocompostos , Tiametoxam
19.
J Econ Entomol ; 113(2): 918-923, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31819971

RESUMO

The citrus red mite, Panonychus citri (McGregor), is an important spider mite pest in citrus producing areas. Owing to long-term acaricide exposure, resistance has evolved rapidly in recent years. To evaluate the extent of resistance, seven field mite populations sampled from various geographical locations in China during 2015-2018 were tested using the leaf-dip bioassay method to determine their susceptibilities to four acaricides. In comparison with the susceptible strain maintained in the laboratory, low or moderate levels of fenpropathrin resistance, while no resistance to abamectin or cyflumetofen, were found among populations sampled from Liangping, Wanzhou, Daying, and Anyue in Southwestern China during the test period. High levels (>1,000-fold, with LC50 values that were greater than the recommended concentration) of resistance to fenpropathrin had evolved in field populations from Southern China, including Guilin, Nanning, and Yuxi, when compared with that of the susceptible strain. Populations from Guilin and Nanning also evolved high resistance levels to abamectin (1,088-fold and 1,401-fold) and cyflumetofen (2,112-fold and 9,093-fold). All the populations sampled in 2018 showed a moderate or high resistance to bifenazate. Generally, field populations of citrus red mites from Southwestern China were more sensitive to the tested acaricides than those of Southern China. The data provide a foundation for developing acaricide resistance management strategies in these regions.


Assuntos
Acaricidas , Citrus , Ácaros , Tetranychidae , Animais , China
20.
Insect Biochem Mol Biol ; 127: 103475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059019

RESUMO

MicroRNAs (miRNAs) are endogenous small noncoding RNAs (18-25 nt) that are involved in many physiological processes including development, cancer, immunity, apoptosis and host-microbe interactions through post-transcriptional regulation of gene expression. In this study, we measured the profile of small RNAs over the developmental transitions of the oriental fruit fly Bactrocera dorsalis from egg hatching, molting, and pupation to adult eclosion. We identified 250 miRNAs, including 83 known and 167 novel miRNAs, and 47 isomiRNAs. In addition, we identified the miRNAs differentially expressed over the developmental transitions. Interestingly, the miR-309 cluster, the miR-2 cluster/family and the let-7 cluster were among these differentially expressed miRNAs, suggesting a role in the regulation of egg hatching, molting and pupation/adult eclosion, respectively. Moreover, a detailed analysis of the temporal expression patterns of 14 highly expressed miRNAs in the pupal stage revealed three types of expression profiles. Furthermore, injection of a miR-100 mimic in the 3rd instar larvae resulted in a significant decrease in pupation and adult eclosion rates, whereas injection of a miR-317 antagomir resulted in a significant decrease in the pupation rate and a decrease in the pupation time, indicating that miR-100 and miR-317 are involved in the process of pupation. Finally, injection of a miR-100/miR-285 mimic or antagomir in pupae resulted in a significant decrease in the eclosion rate and a significant increase in the prevalence of a partial eclosion phenotype, implying the involvement of miR-100 and miR-285 in the process of adult eclosion. This study identified critical miRNAs involved in the transitions of this important holometabolic model and pest insect B. dorsalis from egg hatching to adult eclosion, thus providing a useful resource for exploring the regulatory role of miRNAs during insect post-embryonic development.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Muda/genética , Tephritidae/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , MicroRNAs/metabolismo , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Tephritidae/crescimento & desenvolvimento , Tephritidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa