Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 31-37, 2023 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-36655661

RESUMO

OBJECTIVES: To investigate local cerebral blood perfusion in preterm infants with bronchopulmonary dysplasia (BPD) based on cerebral blood flow (CBF) values of arterial spin labeling (ASL). METHODS: A prospective study was conducted on 90 preterm infants with a gestational age of <32 weeks and a birth weight of <1 500 g who were born in the Department of Obstetrics and admitted to the Department of Neonatology in the Third Affiliated Hospital of Zhengzhou University from August 2021 to June 2022. All of the infants underwent cranial MRI and ASL at the corrected gestational age of 35-40 weeks. According to the presence or absence of BPD, they were divided into a BPD group with 45 infants and a non-BPD group with 45 infants. The two groups were compared in terms of the CBF values of the same regions of interest (frontal lobe, temporal lobe, parietal lobe, occipital lobe, thalamus, and basal ganglia) on ASL image. RESULTS: Compared with the non-BPD group, the BPD group had a significantly lower 1-minute Apgar score, a significantly longer duration of assisted ventilation, and a significantly higher incidence rate of fetal distress (P<0.05). After control for the confounding factors such as corrected age and age at the time of cranial MRI by multiple linear regression analysis, compared with the non-BPD group, the BPD group still had higher CBF values of the frontal lobe, temporal lobe, parietal lobe, occipital lobe, basal ganglia, and thalamus at both sides (P<0.05). CONCLUSIONS: BPD can increase cerebral blood perfusion in preterm infants, which might be associated with hypoxia and a long duration of assisted ventilation in the early stage.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Displasia Broncopulmonar/epidemiologia , Estudos Prospectivos , Idade Gestacional , Circulação Cerebrovascular
2.
Plant Divers ; 46(3): 309-320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798724

RESUMO

Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa