Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Circulation ; 149(22): 1752-1769, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38348663

RESUMO

BACKGROUND: Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS: Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing ß-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS: Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS: Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Aldeídos , Subunidade alfa 1 de Fator de Ligação ao Core , Camundongos Knockout , Miócitos de Músculo Liso , Calcificação Vascular , Animais , Aldeídos/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Cultivadas , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Idoso
2.
Cardiovasc Diabetol ; 23(1): 380, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462342

RESUMO

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are now recommended for patients with heart failure, but the mechanisms that underlie the protective role of SGLT2i in cardiac remodeling remain unclear. Aldehyde dehydrogenase 2 (ALDH2) effectively prevents cardiac remodeling. Here, the key role of ALDH2 in the efficacy of SGLT2i on cardiac remodeling was studied. METHODS: Analysis of multiple transcriptomic datasets and two-sample Mendelian randomization were performed to find out the differentially expressed genes between pathological cardiac hypertrophy models (patients) and controls. A pathological cardiac hypertrophy mouse model was established via transverse aortic constriction (TAC) or isoproterenol (ISO). Cardiomyocyte-specific ALDH2 knockout mice (ALDH2CMKO) and littermate control mice (ALDH2flox/flox) were generated to determine the critical role of ALDH2 in the preventive effects of dapagliflozin (DAPA) on cardiac remodeling. RNA sequencing, gene knockdown or overexpression, bisulfite sequencing PCR, and luciferase reporter assays were performed to explore the underlying molecular mechanisms involved. RESULTS: Only ALDH2 was differentially expressed when the differentially expressed genes obtained via Mendelian analysis and the differentially expressed genes obtained from the multiple transcriptome datasets were combined. Mendelian analysis revealed that ALDH2 was negatively related to the severity of myocardial hypertrophy in patients. DAPA alleviated cardiac remodeling in mouse hearts subjected to TAC or ISO. ALDH2 expression was reduced, whereas ALDH2 expression was restored by DAPA in hypertrophic hearts. Cardiomyocyte specific ALDH2 knockout abolished the protective role of DAPA in preventing cardiac remodeling. ALDH2 expression and activity were increased in DAPA-treated neonatal rat primary cardiomyocytes (NRCMs), H9C2 cells and AC16 cells. Moreover, DAPA upregulated ALDH2 in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes. Sodium/proton exchanger 1 (NHE1) inhibition contributed to the regulation of ALDH2 by DAPA. DAPA suppressed the production of reactive oxygen species (ROS), downregulated DNA methyltransferase 1 (DNMT1) and subsequently reduced the ALDH2 promoter methylation level. Further studies revealed that DAPA enhanced the binding of nuclear transcription factor Y, subunit A (NFYA) to the promoter region of ALDH2, which was due to the decreased promoter methylation level of ALDH2. CONCLUSIONS: The upregulation of ALDH2 plays a critical role in the protection of DAPA against cardiac remodeling. DAPA enhances the binding of NFYA to the ALDH2 promoter by reducing the ALDH2 promoter methylation level through NHE1/ROS/DNMT1 pathway.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Inibidores do Transportador 2 de Sódio-Glicose , Remodelação Ventricular , Animais , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Masculino , Transdução de Sinais , Glucosídeos/farmacologia , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Cardiomegalia/fisiopatologia , Cardiomegalia/patologia , Cardiomegalia/genética , Camundongos , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Compostos Benzidrílicos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Ratos , Bases de Dados Genéticas
3.
Cell Biol Toxicol ; 40(1): 59, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060559

RESUMO

Acute liver injury (ALI) is a common life-threatening condition with a high mortality rate due to liver disease-related death. However, current therapeutic interventions for ALI remain ineffective, and the development of effective novel therapies is urgently needed. Liver samples from patients with drug-induced ALI were collected to detect adenosine kinase (ADK) expression. Male C57BL/6 J mice, hepatocyte-specific ADK knockout (ADKHKO) mice, and their controls (ADKf/f) were exposed to acetaminophen (APAP) and other treatments to investigate the mechanisms of APAP-related ALI. ADK expression was significantly decreased in APAP-injured livers. Hepatocyte-specific ADK deficiency exacerbated APAP-induced ALI, while a gain-of-function approach delivering AAV-ADK, markedly alleviated APAP-induced ALI, as indicated by changes in alanine aminotransferases (ALT) levels, aspartate aminotransferase (AST) levels, neutrophil infiltration and hepatocyte death. This study showed that ADK played a critical role in ALI by activating autophagy through two signaling pathways, the adenosine monophosphate-activated protein kinase (AMPK)-mTOR pathway and the adenosine receptor A1 (ADORA1)-Akt-mTOR pathway. Furthermore, we found that metformin upregulated ADK expression in hepatocytes and protected against APAP-induced ALI. These results demonstrate that ADK is critical in protecting against APAP-induced ALI and that developing therapeutics targeting ADK-adenosine-ADORA1 is a new approach for ALI treatment. Metformin is a potential candidate for preventing ALI by upregulating ADK.


Assuntos
Acetaminofen , Adenosina Quinase , Autofagia , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Acetaminofen/efeitos adversos , Adenosina Quinase/metabolismo , Adenosina Quinase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
Pharmacol Res ; 193: 106815, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290541

RESUMO

Cardiac fibrosis is a common pathophysiological remodeling process that occurs in a variety of cardiovascular diseases and greatly influences heart structure and function, progressively leading to the development of heart failure. However, to date, few effective therapies for cardiac fibrosis exist. Abnormal proliferation, differentiation, and migration of cardiac fibroblasts are responsible for the excessive deposition of extracellular matrix in the myocardium. Acetylation, a widespread and reversible protein post-translational modification, plays an important role in the development of cardiac fibrosis by adding acetyl groups to lysine residues. Many acetyltransferases and deacetylases regulate the dynamic alterations of acetylation in cardiac fibrosis, regulating a range of pathogenic conditions including oxidative stress, mitochondrial dysfunction, and energy metabolism disturbance. In this review, we demonstrate the critical roles that acetylation modifications caused by different types of pathological injury play in cardiac fibrosis. Furthermore, we propose therapeutic acetylation-targeting strategies for the prevention and treatment of patients with cardiac fibrosis.


Assuntos
Coração , Miocárdio , Humanos , Acetilação , Miocárdio/patologia , Fibrose , Processamento de Proteína Pós-Traducional
5.
Arterioscler Thromb Vasc Biol ; 42(6): 700-716, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354308

RESUMO

BACKGROUND: Clinical studies show that the most common single-point mutation in humans, ALDH2 (aldehyde dehydrogenase 2) rs671 mutation, is a risk factor for the development and poor prognosis of atherosclerotic cardiovascular diseases, but the underlying mechanism remains unclear. Apoptotic cells are phagocytosed and eliminated by macrophage efferocytosis during atherosclerosis, and enhancement of arterial macrophage efferocytosis reduces atherosclerosis development. METHODS: Plaque areas, necrotic core size, apoptosis, and efferocytosis in aortic lesions were investigated in APOE-/- mice with bone marrow transplanted from APOE-/-ALDH2-/- and APOE-/- mice. RNA-seq, proteomics, and immunoprecipitation experiments were used to screen and validate signaling pathways affected by ALDH2. Efferocytosis and protein levels were verified in human macrophages from wild-type and rs671 mutation populations. RESULTS: We found that transplanting bone marrow from APOE-/-ALDH2-/- to APOE-/- mice significantly increased atherosclerosis plaques compared with transplanting bone marrow from APOE-/- to APOE-/- mice. In addition to defective efferocytosis in plaques of APOE-/- mice bone marrow transplanted from APOE-/-ALDH2-/- mice in vivo, macrophages from ALDH2-/- mice also showed significantly impaired efferocytotic activity in vitro. Subsequent RNA-seq, proteomics, and immunoprecipitation experiments showed that wild-type ALDH2 directly interacted with Rac2 and attenuated its degradation due to decreasing the K48-linked polyubiquitination of lysine 123 in Rac2, whereas the rs671 mutant markedly destabilized Rac2. Furthermore, Rac2 played a more crucial role than other Rho GTPases in the internalization process in which Rac2 was up-regulated, activated, and clustered into dots. Overexpression of wild-type ALDH2 in ALDH2-/- macrophages, rather than the rs671 mutant, rescued Rac2 degradation and defective efferocytosis. More importantly, ALDH2 rs671 in human macrophages dampened the apoptotic cells induced upregulation of Rac2 and subsequent efferocytosis. CONCLUSIONS: Our study has uncovered a pivotal role of the ALDH2-Rac2 axis in mediating efferocytosis during atherosclerosis, highlighting a potential therapeutic strategy in cardiovascular diseases, especially for ALDH2 rs671 mutation carriers.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Proteínas rac de Ligação ao GTP/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Apolipoproteínas E/genética , Apoptose/fisiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Proteína RAC2 de Ligação ao GTP
6.
Int Heart J ; 63(5): 1004-1014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184541

RESUMO

Myocardial ischemia/reperfusion (I/R) injury can bring about more cardiomyocyte death and aggravate cardiac dysfunction, but its pathogenesis remains unclear. This study aimed to investigate the role of long intergenic noncoding RNA-p21 (LincRNA-p21) in myocardial I/R injury and its underlying mechanism. Mice were subjected to myocardial I/R injury by ligation and release of the left anterior descending artery, and HL-1 cardiomyocytes were treated with hydrogen peroxide. Infarct area, cardiac function, and cardiomyocyte apoptosis were determined. Consequently, LincRNA-p21 was found to significantly be elevated both in the reperfused hearts and H2O2-treated cardiomyocytes. Moreover, genetic inhibition of LincRNA-p21 brought about reduced infarct area and improved cardiac function in mice subjected to myocardial I/R injury. LincRNA-p21 knockdown was also demonstrated to inhibit cardiomyocyte apoptosis both in vivo and in vitro. Notably, LincRNA-p21 silencing increased the expression of microRNA-466i-5p (miR-466i-5p) and suppressed the expression of nuclear receptor subfamily 4 group A member 2 (Nr4a2). Mechanically, LincRNA-p21 downregulated and directly interacted with miR-466i-5p, while application of miR-466i-5p inhibitor promoted cardiomyocyte apoptosis that was improved by LincRNA-p21 inhibition. Furthermore, Nr4a2 upregulation caused by LincRNA-p21 overexpression was partially reversed by miR-466i-5p mimics. Thus, LincRNA-p21 positively regulated the expression of Nr4a2, through sponging miR-466i-5p, promoting cardiomyocyte apoptosis in myocardial I/R injury. The current study revealed a novel LincRNA-p21/miR-466i-5p/Nr4a2 pathway for myocardial I/R injury, indicating that LincRNA-p21 may serve as a potential target for future therapy.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Apoptose/genética , Peróxido de Hidrogênio/metabolismo , Infarto , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
J Cell Mol Med ; 25(6): 2931-2943, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523568

RESUMO

Increased adenosine helps limit infarct size in ischaemia/reperfusion-injured hearts. In cardiomyocytes, 90% of adenosine is catalysed by adenosine kinase (ADK) and ADK inhibition leads to higher concentrations of both intracellular adenosine and extracellular adenosine. However, the role of ADK inhibition in myocardial ischaemia/reperfusion (I/R) injury remains less obvious. We explored the role of ADK inhibition in myocardial I/R injury using mouse left anterior ligation model. To inhibit ADK, the inhibitor ABT-702 was intraperitoneally injected or AAV9 (adeno-associated virus)-ADK-shRNA was introduced via tail vein injection. H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to elucidate the underlying mechanisms. ADK was transiently increased after myocardial I/R injury. Pharmacological or genetic ADK inhibition reduced infarct size, improved cardiac function and prevented cell apoptosis and necroptosis in I/R-injured mouse hearts. In vitro, ADK inhibition also prevented cell apoptosis and cell necroptosis in H/R-treated H9c2 cells. Cleaved caspase-9, cleaved caspase-8, cleaved caspase-3, MLKL and the phosphorylation of MLKL and CaMKII were decreased by ADK inhibition in reperfusion-injured cardiomyocytes. X-linked inhibitor of apoptosis protein (XIAP), which is phosphorylated and stabilized via the adenosine receptors A2B and A1/Akt pathways, should play a central role in the effects of ADK inhibition on cell apoptosis and necroptosis. These data suggest that ADK plays an important role in myocardial I/R injury by regulating cell apoptosis and necroptosis.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Mitocôndrias/efeitos dos fármacos , Morfolinas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Necroptose/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
Biochem Biophys Res Commun ; 529(4): 998-1004, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819611

RESUMO

Oxidized low-density lipoprotein (ox-LDL)-mediated NLRP3 inflammasome activation is crucial in atherosclerosis (AS) initiation and progression. Aldehyde dehydrogenase 2 (ALDH2) has been reported to display protective effects during AS development; however, the underlying mechanisms are largely unknown. Here we investigate the role of ALDH2 in ox-LDL-induced NLRP3 inflammasome priming and activation. We treated RAW264.7 murine macrophages with ox-LDL with or without ALDH2 activator Alda-1 and measured NLRP3 inflammasome priming and activation, ALDH2 protein expression and enzyme activity, IL-1ß release, and DNA damage. It was found that ox-LDL impaired ALDH2 activity and induced NLRP3 inflammasome priming and activation. Alda-1 inhibited both of the priming and activation steps of NLRP3 inflammasome as well as subsequent cell pyroptosis and attenuated ROS and 4-HNE levels in ox-LDL-treated macrophages. Taken together, ALDH2 activation inhibits priming and activation of NLRP3 inflammasome via reducing oxidative stress, which suggests that ALDH2 may be a potential target for anti-inflammatory therapies in AS treatment.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Inflamassomos/efeitos dos fármacos , Lipoproteínas LDL/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeídos/antagonistas & inibidores , Aldeídos/metabolismo , Animais , Caspase 1/genética , Caspase 1/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipoproteínas LDL/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Piroptose/genética , Células RAW 264.7 , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Biochem Biophys Res Commun ; 522(2): 518-524, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31784085

RESUMO

Acute pancreatitis (AP) is one of the leading causes of hospital admission for gastrointestinal disorders. Although lipid peroxides are produced in AP, it is unknown if targeting lipid peroxides prevents AP. This study aimed to investigate the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme for lipid peroxide degradation, in AP and the possible underlying mechanisms. Cerulein was used to induce AP in C57BL/6 J male mice and pancreatic acinar cells were used to elucidate underlying mechanisms in vitro. Pancreatic enzymes in the serum, lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and Bcl-2, Bax and cleaved caspase-3 were measured. ALDH2 activation with a small-molecule activator, Alda-1, reduced the levels of the pancreatic enzymes in the serum and the lipid peroxidation products MDA and 4-HNE. In addition, Alda-1 decreased Bax and cleaved caspase-3 expression and increased Bcl-2 expression in vivo and in vitro. In conclusion, ALDH2 activation by Alda-1 has a protective effect in cerulein-induced AP by mitigating apoptosis in pancreatic acinar cells by alleviating lipid peroxidation.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Índice de Gravidade de Doença , Aldeídos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Linhagem Celular , Ceruletídeo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/lesões , Pâncreas/patologia , Pâncreas/ultraestrutura , Pancreatite/induzido quimicamente , Pancreatite/enzimologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Biochem Biophys Res Commun ; 533(4): 1427-1434, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333711

RESUMO

Sympathetic stimulated-cardiac fibrosis imposes great significance on both disease progression and survival in the pathogenesis of many cardiovascular diseases. However, there are few effective therapies targeting it clinically. The cardioprotective effect of aldehyde dehydrogenase 2 (ALDH2) has been explored in many pathological conditions, whether it can exert benefit effects on chronic sympathetic stimulus-induced cardiac fibrosis remains unclear. In this study, we determined to explore the role of ALDH2 on isoproterenol (ISO)-induced cardiac fibroblasts (CF) proliferation and cardiac fibrosis. It was found that ALDH2 enzymatic activity was impaired in ISO-induced HCF proliferation and Aldh2 deficiency promoted mouse CF proliferation. Alda-1, an ALDH2 activator, exerted obvious suppressive effect on ISO-induced HCF proliferation, together with the induction of cell cycle arrest at G0/G1 phase and decreased expression of cyclin E1 and cyclin-dependent kinase 2 (CDK2). Mechanistically, the inhibitory role of Alda-1 on HCF proliferation was achieved by decreasing mitochondrial reactive oxygen species (ROS) production, which was partially reversed by rotenone, an inducer of ROS. In addition, wild-type mice treated with Alda-1 manifested with reduced fibrosis and better cardiac function after ISO pump. In summary, Alda-1 alleviates sympathetic excitation-induced cardiac fibrosis via decreasing mitochondrial ROS accumulation, highlighting ALDH2 activity as a promising drug target of cardiac fibrosis.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiomiopatias/patologia , Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/enzimologia , Cardiotônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eletrocardiografia , Fibroblastos/patologia , Fibrose , Ventrículos do Coração/patologia , Humanos , Isoproterenol/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 39(11): 2303-2319, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510791

RESUMO

OBJECTIVE: Hypoxia-induced pulmonary hypertension (HPH) increases lipid peroxidation with generation of toxic aldehydes that are metabolized by detoxifying enzymes, including ALDH2 (aldehyde dehydrogenase 2). However, the role of lipid peroxidation and ALDH2 in HPH pathogenesis remain undefined. Approach and Results: To determine the role of lipid peroxidation and ALDH2 in HPH, C57BL/6 mice, ALDH2 transgenic mice, and ALDH2 knockout (ALDH2-/-) mice were exposed to chronic hypoxia, and recombinant tissue-specific ALDH2 overexpression adeno-associated viruses were introduced into pulmonary arteries via tail vein injection for ALDH2 overexpression. Human pulmonary artery smooth muscle cells were used to elucidate underlying mechanisms in vitro. Chronic hypoxia promoted lipid peroxidation due to the excessive production of reactive oxygen species and increased expression of lipoxygenases in lung tissues. 4-hydroxynonenal but not malondialdehyde level was increased in hypoxic lung tissues which might reflect differences in detoxifying enzymes. ALDH2 overexpression attenuated the development of HPH, whereas ALDH2 knockout aggravated it. Specific overexpression of ALDH2 using AAV1 (adeno-associated virus)-ICAM (intercellular adhesion molecule) 2p-ALDH2 and AAV2-SM22αp (smooth muscle 22 alpha)-ALDH2 viral vectors in pulmonary artery smooth muscle cells, but not endothelial cells, prevented the development of HPH. Hypoxia or 4-hydroxynonenal increased stabilization of HIF (hypoxia-inducible factor)-1α, phosphorylation of Drp1 (dynamin-related protein 1) at serine 616, mitochondrial fission, and pulmonary artery smooth muscle cells proliferation, whereas ALDH2 activation suppressed the latter 3. CONCLUSIONS: Increased 4-hydroxynonenal level plays a critical role in the development of HPH. ALDH2 attenuates the development of HPH by regulating mitochondrial fission and smooth muscle cell proliferation suggesting ALDH2 as a potential new therapeutic target for pulmonary hypertension.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Hipertensão Pulmonar/enzimologia , Aldeído-Desidrogenase Mitocondrial/genética , Aldeídos/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia , Peroxidação de Lipídeos , Lipoxigenases/metabolismo , Pulmão/enzimologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dinâmica Mitocondrial , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar , Espécies Reativas de Oxigênio , Regulação para Cima
12.
J Cell Mol Med ; 23(10): 6897-6906, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31379115

RESUMO

Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP-ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP-ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP-ribose) polymerase inhibition suppressed H/R-induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R-treated cells. Poly(ADP-ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R-induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP-ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R-induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.


Assuntos
Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Peptidil-Prolil Isomerase F/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Biochem Biophys Res Commun ; 512(1): 41-48, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30853183

RESUMO

Foam cell formation plays an important role in the initiation and progression of atherosclerosis. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for aldehyde metabolism, is associated with coronary artery disease and affects atherosclerotic plaque vulnerability. However, the role of ALDH2 in foam cell formation remains unclear. Using peritoneal macrophages from ALDH2-deficient and control mice, we found that ALDH2 deficiency suppressed foam cell formation induced by oxidized low-density lipoproteins (ox-LDL) but not acetylated low-density lipoproteins (ac-LDL) ex vivo. After incubation with ox-LDL, ALDH2-deficient macrophages expressed lower levels of CD36 but the expression of other lipid metabolism-related proteins including SRA, LOX-1, ABCA-1, ABCG-1 and ACAT-1 was not changed in ALDH2-/- macrophages. Using CD36 inhibitor, we confirmed that CD36 contributes to the effect of ALDH2 on foam cell formation. PPARγ was downregulated in ox-LDL treated ALDH2-/- macrophages. 4-HNE was increased by ALDH2 deficiency and high concentration of 4-HNE suppressed the expression of PPARγ. These data suggest that ALDH2 plays an important role in foam cell formation via 4-HNE/PPARγ/CD36 pathway.


Assuntos
Aldeído-Desidrogenase Mitocondrial/deficiência , Antígenos CD36/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Regulação para Baixo , Células Espumosas/efeitos dos fármacos , Células Espumosas/patologia , Técnicas In Vitro , Lipoproteínas LDL/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , PPAR gama/metabolismo , Transdução de Sinais
14.
J Cardiovasc Pharmacol ; 73(4): 248-256, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30801261

RESUMO

Pathological stimulus-triggered differentiation of cardiac fibroblasts plays a major role in the development of myocardial fibrosis. Aldehyde dehydrogenase 2 (ALDH2) was reported to exert a protective role in cardiovascular disease, and whether ALDH2 is involved in cardiac fibroblast differentiation remains unclear. In this study, we used transforming growth factor-ß1 (TGF-ß1) to induce the differentiation of human cardiac fibroblasts (HCFs) and adopted ALDH2 activator Alda-1 to verify the influence of ALDH2 on HCF differentiation. Results showed that ALDH2 activity was obviously impaired when treating HCFs with TGF-ß1. Activation of ALDH2 with Alda-1 inhibited the transformation of HCFs into myofibroblasts, demonstrated by the decreased smooth muscle actin (α-actin) and periostin expression, reduced HCF-derived myofibroblast proliferation, collagen production, and contractility. Moreover, application of Smad2/3 inhibitor alleviated TGF-ß1-induced HCF differentiation and improved ALDH2 activity, which was reversed by the application of ALDH2 inhibitor daidzin. Finally, Alda-1-induced HCF alterations alleviated neonatal rat cardiomyocyte hypertrophy, supported by the immunostaining of α-actin. To summarize, activation of ALDH2 enzymatic activity inhibited the differentiation of cardiac fibroblasts via the TGF-ß1/Smad signaling pathway, which might be a promising strategy to relieve myocardial fibrosis of various causes.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Plasticidade Celular/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Animais Recém-Nascidos , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Ativação Enzimática , Fibrose , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Comunicação Parácrina , Fenótipo , Fosforilação , Ratos , Transdução de Sinais
15.
Biochem Biophys Res Commun ; 503(2): 501-507, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730286

RESUMO

Visceral adipose tissue-derived serine protease inhibitor (vaspin), as a secretory adipokine, was reported to exert a protective role on insulin resistance. Recent studies showed that serum vaspin level was downregulated in patients with coronary artery disease. However, whether vaspin exerted specific effects on myocardial injury remains unknown. In this study, we determined to explore the role of vaspin overexpression in myocardial ischaemia/reperfusion (I/R) injury and the underlying mechanisms. Our results showed that the systemic delivery of adeno-associated virus-vaspin to mice reduced myocardial infarct size and apoptosis, and improved cardiac function after reperfusion, accompanied with upregulated autophagic flux and restored lysosomal function in the ischaemic heart. Blockage of the autophagic flux with choroquine mitigated the protection of vaspin on myocardial I/R injury. Moreover, we testified that administration of exogenous recombinant human vaspin on cultured cardiomyocytes suppressed hypoxia/reoxygenation-induced apoptosis, through the AMPK-mTOR-upregulated autophagic flux. Overall, we verified that vaspin functions as an adipokine which can alleviate I/R injury in the heart by suppressing myocardial apoptosis through AMPK-mTOR-dependent activation of autophagic flux, and then provided a potential breakthrough in the treatment of myocardial I/R injury and other ischaemic diseases.


Assuntos
Adipocinas/genética , Autofagia , Vetores Genéticos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Serpinas/genética , Regulação para Cima , Adipocinas/metabolismo , Animais , Apoptose , Linhagem Celular , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Proteínas Recombinantes/farmacologia , Serpinas/metabolismo , Serpinas/farmacologia , Transdução de Sinais
16.
Mol Med ; 21: 68-76, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25730774

RESUMO

Although hyperglycemia is common in patients with acute myocardial infarction (MI), the underlying mechanisms are largely unknown. Insulin signaling plays a key role in the regulation of glucose homeostasis. In this study, we test the hypothesis that rapid alteration of insulin signaling pathways could be a potential contributor to acute hyperglycemia after MI. Male rats were used to produce MI by ligation of the left anterior descending coronary artery. Plasma glucose and insulin levels were significantly higher in MI rats than those in controls. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) was reduced significantly in the liver tissue of MI rats compared with controls, followed by decreased attachment of phosphatidylinositol 3-kinase (PI3K) p85 subunit with IRS1 and Akt phosphorylation. However, insulin-stimulated signaling was not altered significantly in skeletal muscle after MI. The relative mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase were slightly higher in the liver tissue of MI rats than those in controls. Rosiglitazone (ROSI) markedly restored hepatic insulin signaling, inhibited gluconeogenesis and reduced plasma glucose levels in MI rats. Insulin resistance develops rapidly in liver but not skeletal muscle after MI, which contributes to acute hyperglycemia. Therapy aimed at potentiating hepatic insulin signaling may be beneficial for MI-induced hyperglycemia.


Assuntos
Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Resistência à Insulina , Fígado/metabolismo , Infarto do Miocárdio/complicações , Animais , Glicemia/efeitos dos fármacos , Gluconeogênese , Insulina/sangue , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Infarto do Miocárdio/patologia , Ratos , Receptor de Insulina/metabolismo , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/sangue
17.
J Pineal Res ; 59(4): 508-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26475080

RESUMO

Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy.


Assuntos
Melatonina/uso terapêutico , Defeitos do Tubo Neural/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Hiperglicemia/tratamento farmacológico , Camundongos , Gravidez
18.
Cell Mol Immunol ; 21(5): 510-526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472357

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Camundongos Knockout , Neutrófilos , Síndrome do Desconforto Respiratório , Sepse , Animais , Sepse/complicações , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Camundongos , Armadilhas Extracelulares/metabolismo , Masculino , Modelos Animais de Doenças , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitinação , Feminino , Peroxidase/metabolismo , Mutação
19.
Resuscitation ; 182: 109669, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535307

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is a serious threat to human life and health, characterized by high morbidity and mortality. However, given the limitations of the current emergency medical system (EMS), it is difficult to immediately treat patients who experience OHCA. It is well known that rapid defibrillation after cardiac arrest is essential for improving the survival rate of OHCA, yet automated external defibrillators (AED) are difficult to obtain in a timely manner. OBJECTIVE: This review illustrates the feasibility and advantages of AED delivery by drones by surveying current studies on drones, explains that drones are a new strategy in OHCA, and finally proposes novel strategies to address existing problems with drone systems. RESULTS: The continuous development of drone technology has been beneficial for patients who experience OHCA, as drones have demonstrated powerful capabilities to provide rapid delivery of AED. Drones have great advantages over traditional EMS, and the delivery of AED by drones for patients with OHCA is a new strategy. However, the application of this new strategy in real life still has many challenges. CONCLUSION: Drones are promising and innovative tools. Many studies have demonstrated that AED delivery by drones is feasible and cost-effective; however, as a new strategy to improve the survival rate of OHCA patients, there remain problems to be solved. In the future, more in-depth investigations need to be conducted.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Humanos , Dispositivos Aéreos não Tripulados , Parada Cardíaca Extra-Hospitalar/terapia , Desfibriladores , Prognóstico
20.
Cell Death Dis ; 14(2): 108, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774349

RESUMO

The aberrant differentiation of valvular interstitial cells (VICs) to osteogenic lineages promotes calcified aortic valves disease (CAVD), partly activated by potentially destructive hemodynamic forces. These involve Rho A/ROCK1 signaling, a mechano-sensing pathway. However, how Rho A/ROCK1 signaling transduces mechanical signals into cellular responses and disrupts normal VIC homeostasis remain unclear. We examined Rho A/ROCK1 signaling in human aortic valves, and further detected how Rho A/ROCK1 signaling regulates mineralization in human VICs. Aortic valves (CAVD n = 22, normal control (NC) n = 12) from patients undergoing valve replacement were investigated. Immunostaining and western blotting analysis indicated that Rho A/ROCK1 signaling, as well as key transporters and enzymes involved in the Warburg effect, were markedly upregulated in human calcified aortic valves compared with those in the controls. In vitro, Rho A/ROCK1-induced calcification was confirmed as AMPK-dependent, via a mechanism involving metabolic reprogramming of human VICs to Warburg effect. Y-27632, a selective ROCK1 inhibitor, suppressed the Warburg effect, rescued AMPK activity and subsequently increased RUNX2 ubiquitin-proteasome degradation, leading to decreased RUNX2 protein accumulation in human VICs under pathological osteogenic stimulus. Rho A/ROCK1 signaling, which is elevated in human calcified aortic valves, plays a positive role in valvular calcification, partially through its ability to drive metabolic switching of VICs to the Warburg effect, leading to altered AMPK activity and RUNX2 protein accumulation. Thus, Rho A/ROCK1 signaling could be an important and unrecognized hub of destructive hemodynamics and cellular aerobic glycolysis that is essential to promote the CAVD process.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Calcinose/patologia , Células Cultivadas , Osteogênese , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa