Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Opt ; 63(11): 2783-2790, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856372

RESUMO

Orthogonal frequency division multiplexing (OFDM) utilizes numerous sub-carriers to achieve high transmission data rates. The frequency selectivity of the channel becomes a crucial factor influencing the communication performance of OFDM-based systems. In optical wireless communication (OWC) systems, the photomultiplier tube (PMT) may experience saturation when the incident optical power approaches its saturation threshold. This paper, for the first time, characterizes the saturation levels of a high-speed PMT based on the measured amplitude in the time domain and the output response of the PMT in the frequency domain. Additionally, an adaptive optical saturation compensation algorithm, leveraging an electronically controlled variable optical attenuator, is proposed to realize a reliable OWC system. Experimental results demonstrate that the proposed saturation compensation method achieves a higher tolerance to large dynamic signal and background radiation compared with that without compensation, while maintaining a satisfactory bit error rate.

2.
Opt Express ; 31(2): 1705-1720, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785200

RESUMO

An ultrasensitive optical fiber sensor based on the optical Vernier effect is proposed for the simultaneous measurement of axial strain and temperature. The sensor structure comprises two cascaded Mach-Zehnder interferometers (MZIs) with different free space ranges. The single MZI is built up by fusion splicing a segment of ∼3 mm twin-core single-hole fiber (TCSHF) between two pieces of ∼5 mm none core fibers (NCF). When acting separately, each MZI can respond linearly to the axial strain change with a sensitivity of ∼ 0.6 pm/µÎµ and temperature with a sensitivity of ∼34 pm/°C. When the two MZIs are cascaded in series, the sensitivities are amplified about 30 times because of the optical Vernier effect. Experimental results demonstrate that the cascaded structure exhibits a high axial strain sensitivity of ∼ 17 pm/µÎµ in the range of 0 to 2000 µÎµ and temperature sensitivity of ∼1.16 nm/°C in the range of 30 to 70 °C. Moreover, the cascaded structure can simultaneously measure the axial strain and temperature change in the acceptable error ranges.

3.
Opt Express ; 31(17): 28636-28648, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710913

RESUMO

A novel inline Fabry-Perot interferometer (FPI) for simultaneous relative humidity (RH) and temperature monitoring is proposed. The sensing probe consists of a section of hollow core Bragg fiber (HCBF) spliced with a single-mode fiber pigtail. The end-face of the HCBF is coated with Chitosan and ultraviolet optical adhesive (UVOA), forming two polymer layers using a well-designed fabrication process. The surfaces of the layers and splicing point will generate multiple-beam interference and form Vernier-effect (VE) related envelopes in the reflection spectrum. A signal processing (SP) method is proposed to demodulate the VE envelopes from a complicated superimposed raw spectrum. The principle of the SP algorithm is analyzed theoretically and verified experimentally. The sensor's RH and temperature response are studied, exhibiting a high sensitivity of about 0.437 nm/%RH and 0.29 nm/ ∘C, respectively. Using a matrix obtained from experiment results, the simultaneous RH and temperature measurement is achieved. Meanwhile, the simple fabrication process, compact size and potential for higher sensitivity makes our proposed structure integrated with the SP algorithm a promising sensor for practical RH and temperature monitoring.

4.
Opt Lett ; 48(8): 1990-1993, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058624

RESUMO

A highly sensitive inline gas pressure sensor based on the hollow core Bragg fiber (HCBF) and harmonic Vernier effect (VE) is proposed and experimentally demonstrated. By sandwiching a segment of HCBF between the lead-in single-mode fiber (SMF) and the hollow core fiber (HCF), a cascaded Fabry-Perot interferometer is produced. The lengths of the HCBF and HCF are precisely optimized and controlled to generate the VE, achieving a high sensitivity of the sensor. Meanwhile, a digital signal processing (DSP) algorithm is proposed to research the mechanism of the VE envelope, thus providing an effective way to improve the sensor's dynamic range based on calibrating the order of the dip. Theoretical simulations are investigated and matched well with the experimental results. The proposed sensor exhibits a maximum gas pressure sensitivity of 150.02 nm/MPa with a low temperature cross talk of 0.00235 MPa/ ∘C. All these advantages highlight the sensor's enormous potential for gas pressure monitoring under various extreme conditions.

5.
J Environ Manage ; 338: 117784, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989952

RESUMO

Damming alters downstream sediment supply relationships and erosion in the estuarine delta. Given that sediment grainsize serves as a key parameter for the ability to adsorb heavy metals from water, the assessment of estuarine heavy metal risk needs to get connected initially. Hence, fine suspended sediment (<63 µm) in the Yangtze River estuary (YRE) was divided into four grainsize fractions to simulate the surface suspended sediment concentration (SSC) and grainsize composition before and after the completion of the Three Gorges Dam (TGD). Representative months were selected for flood peak reduction (October) and runoff compensation in the dry season (March) to maximize the scheduling impact of the TGD on runoff and riverine sediment input to the YRE. An improved Water Quality Index (WQI) approach was proposed to assess the combined risk alteration of five heavy metals in six estuarine sensitive targets due to TGD-induced sediment characteristics. The results demonstrated that TGD significantly but tardily reduced the SSC and the proportion of fine sediment in the YRE, decreasing the risk of heavy metals resuspension. Seasonally, the total SSC became higher in the flood season than in the dry season during post-TGD period. However, the fine SSC in the flood season was averaged only 59.7% of that in the dry season due to the pronounced grainsize coarsening effect. As the significant reduction in fine SSC overcomes the increase in heavy metal content per unit of SS, the integrated resuspension risk declined significantly, particularly for Pb and Cr. Spatially, the risk reduction for sensitive targets near the turbidity maximum zone (TMZ) is 8.4 times greater than for inner river channel. However, undiminished anthropogenic metal inputs to the YRE signified greater pressures on the depositional environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Metais Pesados/análise , Estuários , Rios , Sedimentos Geológicos , China , Poluentes Químicos da Água/análise
6.
Small ; 18(36): e2107373, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35297179

RESUMO

The mechanism of extracellular ligand nano-geometry in ex vivo T cell activation for immunotherapy remains elusive. Herein, the authors demonstrate large aspect ratio (AR) of gold nanorods (AuNRs) conjugated on cell culture substrate enhancing both murine and human T cell activation through the nanoscale anisotropic presentation of stimulatory ligands (anti-CD3(αCD3) and anti-CD28(αCD28) antibodies). AuNRs with large AR bearing αCD3 and αCD28 antibodies significantly promote T cell expansion and key cytokine secretion including interleukin-2 (IL-2), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). High membrane tension observed in large AR AuNRs regulates actin filament and focal adhesion assembly and develops maturation-related morphological features in T cells such as membrane ruffle formation, cell spreading, and large T cell receptor (TCR) cluster formation. Anisotropic stimulatory ligand presentation promotes differentiation of naïve CD8+ T cells toward the effector phenotype inducing CD137 expression upon co-culture with human cervical carcinoma. The findings suggest the importance of manipulating extracellular ligand nano-geometry in optimizing T cell behaviors to enhance therapeutic outcomes.


Assuntos
Linfócitos T CD8-Positivos , Nanopartículas , Animais , Complexo CD3/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Interleucina-2/metabolismo , Ligantes , Ativação Linfocitária , Camundongos
7.
Opt Express ; 30(25): 44420-44433, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522867

RESUMO

An ultra-high sensitivity parallel-connected Fabry-Perot interferometers (FPIs) pressure sensor is proposed and demonstrated based on hollow core Bragg fiber (HCBF) and harmonic Vernier effect. The HCBF functions as a micro Fabry-Perot cavity and possesses low transmission loss. One FPI acts as the sensing unit while the other FPI is used as the reference unit to generate the Vernier effect. The sensing FPI was prepared by fusion splicing a section of HCBF between a single-mode fiber (SMF) and a hollow silica tube (HST), and the reference FPI was fabricated by sandwiching a piece of HCBF between two SMFs. Two FPIs with very different free spectral ranges (FSRs) in the fringe pattern were connected to the 2 × 2 coupler parallelly, which realizes the harmonic Vernier effect and ensures the stability of the interference fringe. Laboratory results exhibited that the pressure sensitivity can be enhanced to 119.3 nm/MPa within 0-0.5 MPa by the proposed sensor. Moreover, low-temperature crosstalk of 0.074 kPa/° was achieved. Compared with the traditional optical fiber gas pressure sensor, the advanced sensor features high sensitivity, stability, easy fabrication, and fast response, which can be a promising candidate for real-time and high-precision gas pressure monitoring.

8.
Opt Express ; 29(12): 17915-17925, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154063

RESUMO

In this paper, the Mach-Zehnder interferometer (MZI) based on ring-core fiber was proposed and manufactured. Benefiting from the identical diameters of ring-core fiber, no-core fiber, and single-mode fiber, the MZI fiber sensor can be prototyped by sandwiching the ring-core fiber between the no-core fiber and the single-mode fiber (SMF). With the proposed specific structure of the ring-core fiber, the simultaneous measurement of temperature and curvature was achieved with the MZI sensor by means of monitoring the wavelength shift of interference dips. Experimental results have shown that the sensitivity of curvature sensing could reach up to -3.68 nm/m-1 in the range from 1.3856 m-1 to 3.6661 m-1 with high linearity of 0.9959. Meanwhile, the maximum temperature sensitivity is measured to be 72 pm/°C with a fairly good linearity response of 0.9975. In addition, by utilizing the 2×2 matrix algorithm, the dual demodulation of temperature and curvature can be readily realized for the purpose of direct sensing. It is believed that the proposed special structure-based MZI sensor may show great potential applications in the field of fiber-optics sensing and structural health monitoring (SHM).

9.
Opt Express ; 29(17): 26375-26384, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615074

RESUMO

In this paper, an all-fiber sensor based on hollow core Bragg fiber (HCBF) is proposed and successfully manufactured, which can be used for human breath monitoring. Benefiting from the identical outer diameters of HCBF and single mode fibers (SMFs), the sensor can be directly constructed by sandwiching a segment of HCBF between two SMFs. Based on optical propagation properties of HCBF, the transmission light is sensitive to specific environmental change induced by human breath. Thus, the breath signals can be explicitly recorded by measuring the intensity of the transmitted laser. The sensor presents a rapid response time of ∼0.15 s and recovery time of ∼0.65 s. In addition, the HCBF-based sensor shows good insensitivity to the variation of temperature and curvature, which enables its reliable sensing performance in the dynamic and changeful environment.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Monitorização Fisiológica/instrumentação , Fibras Ópticas , Respiração , Temperatura , Desenho de Equipamento , Humanos , Fatores de Tempo
10.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34883960

RESUMO

In this paper, the hollow core Bragg fiber (HCBF)-based sensor based on anti-resonant reflecting optical waveguide (ARROW) model is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature by simply sandwiching a segment of HCBF within two single-mode fibers (SMFs). The special construction of a four-bilayer Bragg structure provides a well-defined periodic interference envelope in the transmission spectrum for sensing external perturbations. Owing to different sensitivities of interference dips, the proposed HCBF-based sensor is capable of dual-parameter detection by monitoring the wavelength shift. The highest curvature sensitivity of the proposed sensor is measured to be 74.4 pm/m-1 in the range of 1.1859-2.9047 m-1 with the adjusted R square value of 0.9804. In the meanwhile, the best sensitivity of temperature sensing was detected to be 16.8 pm/°C with the linearity of 0.997 with temperature range varying from 25 to 55 °C. Furthermore, with the aid of the 2 × 2 matrix, the dual demodulation of curvature and temperature can be carried out to realize the simultaneous measurement of these two parameters. Besides dual-parameter sensing based on wavelength shift, the proposed sensor can also measure temperature-insensitive curvature by demodulating the intensity of resonant dips.

11.
Nano Lett ; 20(5): 3207-3216, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32289227

RESUMO

A physical, noninvasive, and reversible means of controlling the nanoscale presentation of bioactive ligands is highly desirable for regulating and investigating the time-dependent responses of cells, including stem cells. Herein we report a magnetically actuated dynamic cell culture platform consisting of a soft hydrogel substrate conjugated with RGD-bearing magnetic nanoparticle (RGD-MNP). The downward/upward magnetic attraction conceals/promotes the presentation of the RGD-MNP in/on the soft hydrogel matrix, thereby inhibiting/enhancing the cell adhesion and mechanosensing-dependent differentiation. Meanwhile, the lateral magnetic attraction promotes the unidirectional migration of cells in the opposite direction on the hydrogel. Furthermore, cyclic switching between the "Exposed" and "Hidden" conditions induces the repeated cycles of differentiation/dedifferentiation of hMSCs which significantly enhances the differentiation potential of hMSCs. Our design approach capitalizes on the bulk biomaterial matrix as the macroscopic caging structure to enable dynamic regulation of cell-matrix interactions reversibly, which is hard to achieve by using conventional cell culture systems.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Nanopartículas , Adesão Celular , Desdiferenciação Celular , Humanos , Ligantes
12.
Small ; 15(15): e1900242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883027

RESUMO

Hydrogels are emerging biomaterials with desirable physicochemical characteristics. Doping of metal ions such as Ca2+ , Mg2+ , and Fe2+ provides the hydrogels with unique attributes, including bioactivity, conductivity, and tunability. Traditionally, this doping is achieved by the interaction between metal ions and corresponding ligands or the direct incorporation of as-prepared metal-based nanoparticles (NPs). However, these approaches rely on a complex and laborious preparation and are typically restricted to few selected ion species. Herein, by mixing aqueous solutions of ligands (bisphosphonates, BPs), polymer grafted with ligands, and metal ions, a series of self-assembled metallic-ion nanocomposite hydrogels that are stabilized by the in situ formed ligand-metal ion (BP-M) NPs are prepared. Owing to the universal coordination between BPs and multivalent metal ions, the strategy is highly versatile and can be generalized for a wide array of metal ions. Such hydrogels exhibit a wide spectrum of mechanical properties and remarkable dynamic properties, such as excellent injectability, rapid stress relaxation, efficient ion diffusion, and triggered disassembly for harvesting encapsulated cells. Meanwhile, the hydrogels can be conveniently coated or patterned onto the surface of metals via electrophoresis. This work presents a universal strategy to prepare designer nanocomposite materials with highly tunable and dynamic behaviors.

13.
Sci Rep ; 14(1): 2855, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310143

RESUMO

Currently, the accuracy of tea bud identification is crucial in the intelligent development of the tea industry, and this is due to the fact that identifying tea buds is a key step in determining the quality of tea and distinguishing the categories. In this experiment, 3728 tea shoots with similar characteristics in four categories (Anji White Tea, Huangshan Seed, Longjing 43, and NongKang Early) were photographed to establish the dataset TBD (Tea Bud Dataset). In this experiment, we constructed a tea shoot recognition model. We used seven mainstream algorithms (YOLOv4, YOLOv5, YOLOX, YOLOv7, EfficientDet, Faster R-CNN and CenterNet) to conduct shoot recognition comparison experiments and found that the YOLOX algorithm performs the best with its Precision, Recall, F1 score, mAP 89.34%, 93.56%, 0.91, and 95.47%, respectively. Then the YOLOX algorithm combined with the dataset to construct the shoot recognition model, the shoots of four kinds of tea to establish a tea shoot classification model, the model to identify the Anji white tea shoots of Precision 76.19%, the yellow mountain species of Precision 90.54%, Longjing 43 Precision 80%, NongKang early to the morning of the Precision was 77.78%. The results of this experiment show that the established tea shoot classification model has achieved a better classification of the above four types of tea shoots, which can also understand the feasibility of mechanical intelligent tea picking and provide some theoretical support for the application of mechanical intelligent tea picking in practice.


Assuntos
Algoritmos , Chá
14.
J Hazard Mater ; 476: 134888, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38897117

RESUMO

As a critical source of marine microplastics (MPs), estuarine MPs community varied in movement due to particle diversity, while tide and runoff further complicated their transport. In this study, a particle mass gradient that represents MPs in the surface layer of the Yangtze River estuary was established. This was done by calculating the masses of 16 particle types using the particle size probability density function (PDF), with typical shapes and polymers as classifiers. Further, Aschenbrenner shape factor and polymer density were embedded into drag coefficients to categorically trace MP movement footprints. Results revealed that the MPs in North Branch moved northward and the MPs in South Branch moved southeastward in a spiral oscillation until they left the model boundary under Changjiang Diluted Water front and the northward coastal currents. Low-density fibrous MPs are more likely to move into the open ocean and oscillate more than films, with a single PE fiber trajectory that reached a maximum oscillatory width of 16.7 km. Over 95 % of the PVC fiber particles settled in nearshore waters west of 122.5°E. Elucidating the aggregation and retention of different MPs types can provide more accurate environmental baseline reference for more precise MP exposure levels and risk dose of ingestion for marine organisms.

15.
Regen Biomater ; 11: rbad100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223292

RESUMO

Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity and low immunogenicity. They can respond to multiple extracellular matrix signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation toward functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.

16.
ACS Biomater Sci Eng ; 10(3): 1686-1696, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38347681

RESUMO

One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.


Assuntos
Microfluídica , Fator A de Crescimento do Endotélio Vascular , Humanos , Preparações de Ação Retardada/química , Fator A de Crescimento do Endotélio Vascular/genética , Engenharia Tecidual , Polímeros
17.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048071

RESUMO

Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Senescência Celular/genética , Rejuvenescimento , Estresse Oxidativo
18.
ACS Mater Au ; 3(5): 540-547, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089089

RESUMO

The use of poly(ε-caprolactone) (PCL) for biomedical applications is well established, particularly for permanent implants, due to its slow degradation rate, suitable mechanical properties, and biocompatibility. However, the slow degradation rate of PCL limits its application for short-term and temporary biomedical applications where bioabsorbability is required. To enhance the properties of PCL and to expand its biomedical applications, we developed an approach to produce PCL membranes with tunable degradation rates, mechanical properties, and biofunctional features. Specifically, we utilized electrospinning to create fibrous PCL membranes, which were then chemically modified using potassium permanganate to alter their degradability while having minimal impact on their fibrous morphology. The effects of the chemical treatments were investigated by treating the samples for different time periods ranging from 6 to 48 h. After the 48 h treatment, the membrane degraded by losing 25% of its mass over 12 weeks in degradation studies, while maintaining its mechanical strength and exhibiting superior biofunctional features. Our results suggest that this approach for developing PCL with tailored properties could have significant potential for a range of biomedical applications.

19.
Sci Total Environ ; 860: 160510, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455740

RESUMO

The turbulent boundary layer generated by wind in the estuarine surface water serves as a main factor affecting the distribution of suspended particulate matter (SPM) and suspended sediment concentration (SSC). In this study, representative typhoon-induced variation of surface fine SPM (<63 µm) was simulated in the Yangtze River Estuary (YRE) under two time scenarios. Each scenario contained four grainsize SPM fractions named Fraction 1 (<8 µm), Fraction 2 (8-16 µm), Fraction 3 (16-32 µm), Fraction 4 (32-63 µm). The typhoon-induced resuspended multifractal SSC quantification (TRMSQ) based on the relationship between SPM grainsize and heavy metal adsorption capacity was proposed to assess the variation in the resuspended threat of heavy metal to 6 key estuarine protected objects (three reservoirs & three national reserves) between Scenarios 1 and 2. The results presented that Fraction 3 exhibited the maximum increment in SSC resuspension mass and longest regression time from typhoon. Combined with TRMSQ, chromium (Cr) was calculated to be the riskiest typhoon-induced factor. The integrated resuspended risk of heavy metals for each protected object tends to increase from the northwest of Chongming Island (1.2) towards the maximum turbidity zone (>9) downstream, with an estuary-wide mean of 3.3.


Assuntos
Tempestades Ciclônicas , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Estuários , Material Particulado/análise , China
20.
Gels ; 10(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38247755

RESUMO

Osteoporosis and degenerative endocrine diseases are some of the major causes of disability in the elderly. The feedback loop in the endocrine system works to control the release of hormones and maintain the homeostasis of metabolism, thereby regulating the function of target organs. The breakdown of this feedback loop results in various endocrine and metabolic disorders, such as osteoporosis, type II diabetes, hyperlipidemia, etc. The direct regulation of redox homeostasis is one of the most attractive strategies to redress the imbalance of the feedback loop. The biophysical regulation of redox homeostasis can be achieved through engineered dynamic hydrogel niches, with which cellular mechanics and redox homeostasis are intrinsically connected. Mechanotransduction-dependent redox signaling is initiated by cell surface protein assemblies, cadherins for cell-cell junctions, and integrins for cell-ECM interactions. In this review, we focused on the biophysical regulation of redox homeostasis via the tunable cell-ECM interactions in the engineered dynamic hydrogel niches. We elucidate processes from the rational design of the hydrogel matrix to the mechano-signaling initiation and then to the redox response of the encapsulated cells. We also gave a comprehensive summary of the current biomedical applications of this strategy in several degenerative endocrine disease models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa