Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 104(5-1): 054407, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942771

RESUMO

Experimentally, certain cells in the brain exhibit a spike-burst activity with burst synchronization at transition to and during sleep (or drowsiness), while they demonstrate a desynchronized tonic activity in the waking state. We herein investigated the neural activities and their transitions by using a model of coupled Hindmarsh-Rose neurons in an Erdos-Rényi random network. By tuning synaptic strength, spontaneous transitions between tonic and bursting neural activities can be realized. With excitatory chemical synapses or electrical synapses, slow-wave activity (SWA) similar to that observed during sleep can appear, as a result of synchronized bursting activities. SWA cannot appear in a network that is dominated by inhibitory chemical synapses, because neurons exhibit desynchronized bursting activities. Moreover, we found that the critical synaptic strength related to the transitions of neural activities depends only on the network average degree (i.e., the average number of signals that all the neurons receive). We demonstrated, both numerically and analytically, that the critical synaptic strength and the network average degree obey a power-law relation with an exponent of -1. Our study provides a possible dynamical network mechanism of the transitions between tonic and bursting neural activities for the wakefulness-sleep cycle, and of the SWA during sleep. Further interesting and challenging investigations are briefly discussed as well.

2.
Phys Rev E ; 99(3-1): 032419, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999534

RESUMO

In the course of development, sleep, or mental disorders, certain neurons in the brain display spontaneous spike-burst activity. The synaptic plasticity evoked by such activity is here studied in the presence of spike-timing-dependent plasticity (STDP). In two chemically coupled bursting model neurons, the spike-burst activity can translate the STDP related to pre- and postsynaptic spike activity into burst-timing-dependent plasticity (BTDP), based on the timing of bursts of pre- and postsynaptic neurons. The resulting BTDP exhibits exponential decays with the same time scales as those of STDP. In weakly coupled bursting neuron networks, the synaptic modification driven by the spike-burst activity obeys a power-law distribution. The model can also produce a power-law distribution of synaptic weights. Here, the considered bursting behavior is made of stereotypical groups of spikes, and bursting is evenly spaced by long intervals.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Redes Neurais de Computação
3.
Phys Rev E ; 97(2-1): 022211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548131

RESUMO

In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).

4.
Phys Rev E ; 93: 042302, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176307

RESUMO

Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing.

5.
Sci Rep ; 6: 35255, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739541

RESUMO

Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It's well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.


Assuntos
Atenção/fisiologia , Fixação Ocular/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Humanos , Modelos Neurológicos , Modelos Teóricos , Percepção Visual/fisiologia
6.
Sci Rep ; 6: 20888, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853547

RESUMO

Recently, the significant microsaccade-induced neural responses have been extensively observed in experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave an explanation for microsaccades in counteracting visual fading, but also successfully reproduced several microsaccade-related features in experimental findings. These results strongly suggest that, the depression model is very useful to investigate microsaccade-related neural responses. In this paper, by using the model, we extensively study and predict the dependance of microsaccade-related neural responses on several key parameters, which could be tuned in experiments. Particularly, we provide a significant prediction that microsaccade-related neural response also complies with the property "sharper is better" observed in many contexts in neuroscience. Importantly, the property exhibits a power-law relationship between the width of input signal and the responsive effectiveness, which is robust against many parameters in the model. By using mean field theory, we analytically investigate the robust power-law property. Our predictions would give theoretical guidance for further experimental investigations of the functional role of microsaccades in visual information processing.


Assuntos
Modelos Neurológicos , Plasticidade Neuronal , Movimentos Sacádicos/fisiologia , Algoritmos , Fixação Ocular/fisiologia , Humanos , Estimulação Luminosa , Percepção Visual/fisiologia
7.
PLoS One ; 9(3): e91012, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24632779

RESUMO

Public cooperation plays a significant role in the survival and maintenance of biological species, to elucidate its origin thus becomes an interesting question from various disciplines. Through long-term development, the public goods game has proven to be a useful tool, where cooperator making contribution can beat again the free-rides. Differentiating from the traditional homogeneous investment, individual trend of making contribution is more likely affected by the investment level of his neighborhood. Based on this fact, we here investigate the impact of heterogeneous investment on public cooperation, where the investment sum is mapped to the proportion of cooperators determined by parameter α. Interestingly, we find, irrespective of interaction networks, that the increment of α (increment of heterogeneous investment) is beneficial for promoting cooperation and even guarantees the complete cooperation dominance under weak replication factor. While this promotion effect can be attributed to the formation of more robust cooperator clusters and shortening END period. Moreover, we find that this simple mechanism can change the potential interaction network, which results in the change of phase diagrams. We hope that our work may shed light on the understanding of the cooperative behavior in other social dilemmas.


Assuntos
Investimentos em Saúde , Modelos Teóricos , Comportamento Cooperativo , Teoria dos Jogos , Humanos
8.
Neural Comput Appl ; 24(6): 1465-1475, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24719519

RESUMO

The paper is focused on improving the performance of neuro-endocrine models with considering the interaction of glands. Comparing to conventional neuro-endocrine models, the concentration of hormone of one gland is modulated by those of others, and the weights of cells are modulated by the improved endocrine system. The interacted equation among all glands is designed and the parameters of them are chosen with theory analysis. Because all the parameters of the model are constants when the system reaches the equilibrium state, particle swarm optimization algorithm is utilized to search the optimal parameters of the model. The theory analysis indicates that the performance of neuro-endocrine model is better than or at least equal to that of corresponding artificial neural network. To indicate the effectiveness of the proposed model, some time series from different research fields, which are used in some literatures, are tested with the proposed model, the results indicate that the proposed model has some good performance.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23630494

RESUMO

Microsaccades during fixation have been suggested to counteract visual fading. Recent experiments have also observed microsaccade-related neural responses from cellular record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging (fMRI). The underlying mechanism, however, is not yet understood and highly debated. It has been proposed that the neural activity of primary visual cortex (V1) is a crucial component for counteracting visual adaptation. In this paper, we use computational modeling to investigate how short-term depression (STD) in thalamocortical synapses might affect the neural responses of V1 in the presence of microsaccades. Our model not only gives a possible synaptic explanation for microsaccades in counteracting visual fading, but also reproduces several features in experimental findings. These modeling results suggest that STD in thalamocortical synapses plays an important role in microsaccade-related neural responses and the model may be useful for further investigation of behavioral properties and functional roles of microsaccades.

10.
PLoS One ; 8(12): e84644, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391971

RESUMO

In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.


Assuntos
Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Simulação por Computador , Estimulação Elétrica , Rede Nervosa/citologia , Fatores de Tempo
11.
Artigo em Inglês | MEDLINE | ID: mdl-24032894

RESUMO

Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.


Assuntos
Modelos Teóricos , Retroalimentação
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016116, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867266

RESUMO

Many real networks display modular organization, which can influence dynamical clustering on the networks. Therefore, there have been proposals put forth recently to detect network communities by using dynamical clustering. In this paper, we study how the feedback from dynamical clusters can shape the network connection weights with a weight-adaptation scheme motivated from Hebbian learning in neural systems. We show that such a scheme generically leads to the formation of community structure in globally coupled chaotic oscillators. The number of communities in the adaptive network depends on coupling strength c and adaptation strength r. In a modular network, the adaptation scheme will enhance the intramodule connection weights and weaken the intermodule connection strengths, generating effectively separated dynamical clusters that coincide with the communities of the network. In this sense, the modularity of the network is amplified by the adaptation. Thus, for a network with a strong community structure, the adaptation scheme can evidently reflect its community structure by the resulting amplified weighted network. For a network with a weak community structure, the statistical properties of synchronization clusters from different realizations can be used to amplify the modularity of the communities so that they can be detected reliably by the other traditional algorithms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa