Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141929, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604520

RESUMO

The cleaning and utilization of industry wastewater are still a big challenge. In this work, we mainly investigate the effect of electron transfer among multi-interfaces on water electrolysis reaction. Typically, the CoS2, Co3S4/CoS2 (designated as CS4-2) and Co3S4/Co9S8/CoS2 (designated as CS4-8-2) samples are prepared on a large scale by one-step molten salt method. It is found that because of the different work functions (designated as WF; WF(Co3S4) = 4.48eV, WF(CoS2) = 4.41eV, WF(Co9S8) = 4.18 eV), the effective heterojunctions at the multi-interfaces of CS4-8-2 sample, which obviously improve interface charge transfer. Thus, the CS4-8-2 sample shows an excellent oxygen evolution reaction (OER) activity (134 mV/10 mA cm-2, 40 mV dec-1). The larger double-layer capacitance (Cdl = 17.1 mF cm-2) of the CS4-8-2 sample indicates more electrochemical active sites, compared to the CoS2 and CS4-2 samples. Density functional theory (DFT) calculation proves that due to interface polarization under electric field, the multi-interfaces effectively promote electron transfer and regulate electron structure, thus promoting the adsorption of OH- and dissociation of H2O. Moreover, an innovative norfloxacin (NFX) electrolytic cell (EC) is developed through introducing NFX into the electrolyte, in which efficient NFX degradation and hydrogen production are synergistically achieved. To reach 50 mA cm-2, the required cell voltage of NFX-EC has decreased by 35.2%, compared to conventional KOH-EC. After 2h running at 1 V, 25.5% NFX was degraded in the NFX EC. This innovative NFX-EC is highly energy-efficient, which is promising for the synergistic cleaning and utilization of industry wastewater.


Assuntos
Eletrólise , Hidrogênio , Águas Residuárias , Água , Hidrogênio/química , Águas Residuárias/química , Água/química , Transporte de Elétrons , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Oxigênio/química , Elétrons
2.
Chemosphere ; 317: 137857, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642131

RESUMO

In this work, Fe-based metal-organic frameworks (Fe-MOFs) are prepared by a simple solvothermal method, in which acetic acid/N, N-dimethylformamide (HAc/DMF) mixture solvents are employed to regulate the particle morphology, exposed facets and ligand defects. At HAc/DMF = 0/50, 5/45 and 8/42 (volume ratio), the irregular particles (MIL-53(Fe)), elongated icosahedrons (5H-MIL-101(Fe)) and icosahedrons (8H-MIL-101(Fe)) are obtained, respectively. Under visible light irradiation (λ > 420 nm) and the addition of sodium persulfate (PS), 5H-MIL-101(Fe) shows the highest degradation activity for tetracycline (TC). Specifically, 80% of TC has been removed by 5H-MIL-101(Fe) within 25 min, and the degradation kinetics rate is 3.03 times higher than that over MIL-53(Fe). The improvement of catalytic activity is mainly attributed to the active facets exposed and ligand defects of 5H-MIL-101(Fe). Density functional theory (DFT) calculation further confirms that the active facets exposed and ligand defects of 5H-MIL-101(Fe) favor the adsorption and activation of PS, benefiting the generation of •SO4-. Besides, a probable degradation pathway of TC is proposed based on trapping experiments and liquid chromatography-mass spectrometry (LC-MS) test. Furthermore, the toxicities of intermediates are predicted by the quantitative structure-activity relationship (QSAR) mathematical model. This work demonstrates that visible light enhanced PS activation (Vis-PSA) can more effectively degrade organic pollutants, and this work also provides a simple strategy to precisely regulate ligand defects and actively exposed facets of Fe-MOFs to enhance the adsorption and activation of PS.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Adsorção , Ligantes , Poluentes Químicos da Água/química , Tetraciclina , Luz , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa