Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001500

RESUMO

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Tálamo/fisiologia , Neurônios/metabolismo , Corpos Geniculados , Interneurônios/fisiologia , Parvalbuminas/metabolismo
2.
Environ Res ; 252(Pt 1): 118815, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555085

RESUMO

Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.


Assuntos
Água Potável , Poluentes Orgânicos Persistentes , Plâncton , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água Potável/microbiologia , Água Potável/química , Água Potável/análise , Humanos , Atividades Humanas , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/toxicidade , Monitoramento Ambiental , Rios/química , Rios/microbiologia , Bactérias/efeitos dos fármacos , Praguicidas/análise
3.
Nanotechnology ; 34(22)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36827696

RESUMO

Single-photon emitters (SPEs) are attractive as integrated platforms for quantum applications in technologically mature wide-bandgap semiconductors since their stable operation at room temperature or even at high temperatures. In this study, we systematically studied the temperature dependence of the SPE in AlGaN micropillar by experiment. The photoluminescence (PL) spectrum, PL intensity, radiative lifetime and second-order autocorrelation function measurements are investigated over the temperature range from 303 to 373 K. The point defects of AlGaN show strong zero phonon line in the wavelength range of 800-900 nm and highly antibunched photon emission even up to 373 K. Our study reveals a possible mechanism for linewidth broadening in AlGaN SPE at high temperatures. This indicates a possible key for on-chip integration applications based on this material operating at high temperatures.

4.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930851

RESUMO

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Linfócitos T CD8-Positivos/metabolismo , Furanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacologia , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 40: 116186, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971490

RESUMO

Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are located at the meeting-point of ERK and p38 MAPK signaling pathways, which can phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at the conserved serine 209 exclusively. MNKs modulate the translation of mRNA involved in tumor-associated signaling pathways. Consequently, selective inhibitors of MNK1/2 could reduce the level of phosphorylated eIF4E. Series of imidazopyrazines, imidazopyridazines and imidazopyridines derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against diffuse large B-cell lymphoma (DLBCL) cell lines. In particular, compound II-5 (MNK1 IC50 = 2.3 nM; MNK2 IC50 = 3.4 nM) exhibited excellent enzymatic inhibitory potency and proved to be the most potent compound against TMD-8 and DOHH-2 cell lines with IC50 value of 0.3896 µM and 0.4092 µM respectively. These results demonstrated that compound II-5 could be considered as a potential MNK1/2 inhibitor for further investigation.


Assuntos
Desenho de Fármacos , Imidazóis/farmacologia , Isoquinolinas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Isoquinolinas/química , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
6.
Bioorg Chem ; 101: 103943, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554277

RESUMO

Acetyl-CoA carboxylases (ACCs) are the rate-limiting enzymes in the de no lipogenesis, which play an important role in the synthesis and oxidation of fatty acid. Recent research reveals that ACCs are tightly relevant to many kinds of metabolic diseases and cancers. In this study, we synthesized a series of chroman derivatives and evaluated their ACCs inhibitory activities, obtaining compound 4s with IC50 value of 98.06 nM and 29.43 nM of binding activities in ACC1 and ACC2, respectively. Compound 4s exhibited the most potent anti-proliferation activity against A549, H1975, HCT116 and H7901 cell lines (values of IC50: 0.578 µΜ, 1.005 µΜ, 0.680 µΜ and 1.406 µΜ, respectively). Docking studies were performed to explain the structure-activity relationships. These results indicate that compound 4s is a promising ACC1/2 inhibitor for the potent treatment of cancer.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Cromanos/química , Cromanos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Linhagem Celular Tumoral , Cromanos/síntese química , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
7.
Eur Radiol ; 29(4): 1961-1967, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30302589

RESUMO

OBJECTIVE: Accurate detection and segmentation of organs at risks (OARs) in CT image is the key step for efficient planning of radiation therapy for nasopharyngeal carcinoma (NPC) treatment. We develop a fully automated deep-learning-based method (termed organs-at-risk detection and segmentation network (ODS net)) on CT images and investigate ODS net performance in automated detection and segmentation of OARs. METHODS: The ODS net consists of two convolutional neural networks (CNNs). The first CNN proposes organ bounding boxes along with their scores, and then a second CNN utilizes the proposed bounding boxes to predict segmentation masks for each organ. A total of 185 subjects were included in this study for statistical comparison. Sensitivity and specificity were performed to determine the performance of the detection and the Dice coefficient was used to quantitatively measure the overlap between automated segmentation results and manual segmentation. Paired samples t tests and analysis of variance were employed for statistical analysis. RESULTS: ODS net provides an accurate detection result with a sensitivity of 0.997 to 1 for most organs and a specificity of 0.983 to 0.999. Furthermore, segmentation results from ODS net correlated strongly with manual segmentation with a Dice coefficient of more than 0.85 in most organs. A significantly higher Dice coefficient for all organs together (p = 0.0003 < 0.01) was obtained in ODS net (0.861 ± 0.07) than in fully convolutional neural network (FCN) (0.8 ± 0.07). The Dice coefficients of each OAR did not differ significantly between different T-staging patients. CONCLUSION: The ODS net yielded accurate automated detection and segmentation of OARs in CT images and thereby may improve and facilitate radiotherapy planning for NPC. KEY POINTS: • A fully automated deep-learning method (ODS net) is developed to detect and segment OARs in clinical CT images. • This deep-learning-based framework produces reliable detection and segmentation results and thus can be useful in delineating OARs in NPC radiotherapy planning. • This deep-learning-based framework delineating a single image requires approximately 30 s, which is suitable for clinical workflows.


Assuntos
Aprendizado Profundo , Carcinoma Nasofaríngeo/radioterapia , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/diagnóstico por imagem , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/diagnóstico por imagem , Redes Neurais de Computação , Planejamento de Assistência ao Paciente , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X , Adulto Jovem
8.
Bioorg Med Chem ; 27(7): 1391-1404, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824168

RESUMO

BRD9 is the subunit of mammalian SWI/SNF chromatin remodeling complex (BAF). SWI/SNF complex mutations were found in nearly 20% of human cancers. The biological role played by BRD9 bromodomain remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. In this paper, we synthesized a series of imidazo[1,5-a]pyrazin-8(7H)-one derivatives as potent BRD9 inhibitors and evaluated their BRD9 inhibitory activity in vitro and anti-proliferation effects against tumor cells. Gratifyingly, compound 27 and 29 exhibited robust potency of BRD9 inhibition with IC50 values of 35 and 103 nM respectively. Docking studies were performed to explain the structure-activity relationship. Furthermore, compound 27 potently inhibited cell proliferation in cell lines A549 and EOL-1 with an IC50 value of 6.12 µM and 1.76 µM respectively. The chemical probe, compound 27, was identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.


Assuntos
Desenho de Fármacos , Imidazóis/farmacologia , Pirazinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
9.
Bioorg Med Chem ; 27(7): 1211-1225, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824167

RESUMO

Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone-aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50 = 7.0 nM; MNK2 IC50 = 6.1 nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91 µM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridonas/farmacologia , Aminas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Piridonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Chem Biodivers ; 16(2): e1800189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30230227

RESUMO

Excess lipid accumulation can initiate the development and progression of atherosclerotic lesions, thus eventually leading to cardiovascular disease. Lipid-lowering medication therapy is one of the cornerstones of cardiovascular disease therapy. On the basis of the cholesterol absorption inhibitor ezetimibe, we successfully synthesized seven 2-azetidinone derivatives and eighteen 1H-pyrrole-2,5-dione derivatives. Most of the new compounds significantly inhibited cholesterol uptake in vitro. In addition, one of the most active inhibitors, 3-(4-fluorophenyl)-1-[(3S)-3-hydroxy-3-(4-hydroxyphenyl)propyl]-4-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione (14q), showed no cytotoxicity in L02 and HEK293T cell lines. Further evaluation indicated that 14q inhibited considerably the amount of TNF-α, ROS, MDA, and LDH in vitro. Therefore, 14q might be a novel cholesterol absorption inhibitor.


Assuntos
Anticolesterolemiantes/síntese química , Azetidinas/farmacologia , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Pirróis/farmacologia , Anticolesterolemiantes/farmacologia , Azetidinas/síntese química , Transporte Biológico/efeitos dos fármacos , Colesterol/metabolismo , Células HEK293 , Humanos , Pirróis/síntese química , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 26(8): 1435-1447, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496412

RESUMO

Excess lipid accumulation in the arterial intima and formation of macrophage-derived foam cells in the plaque could cause atherosclerotic lesion. Cholesterol absorption inhibitors could suppress the lipid accumulation of human macrophage, inflammatory response and the development of atherosclerosis. In this research, a series of 1H-pyrrole-2,5-dione derivatives were synthesized as cholesterol absorption inhibitor and tested in in vitro experiments. One of the most active inhibitors, compound 20 exhibited stronger in vitro cholesterol absorption activity than ezetimibe, no cytotoxicity in HEK293 and RAW264.7 cell lines and satisfied lipophilicity. The further study indicated that 20 could inhibit lipid accumulation of macrophage and reduce the secretion of LDH, MDA, TNF-α and ROS in a concentration-dependent manner. In conclusion, as a novel and potent cholesterol absorption inhibitor, compound 20 could suppress the formation of foam cells and inflammatory response.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Inflamação/metabolismo , Pirróis/química , Pirróis/farmacologia , Animais , Anticolesterolemiantes/síntese química , Anticolesterolemiantes/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Espumosas/metabolismo , Células HEK293 , Humanos , Lipídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Pirróis/síntese química , Células RAW 264.7 , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 26(3): 849-853, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26783178

RESUMO

Cholesterol absorption inhibitor (CAI) targeting Niemann-Pick C1-like1 protein was developed for the treatment of hyperlipidaemia and only ezetimibe was approved so far. For developing novel CAIs, we synthesized sixteen 2-azetidinone derivatives and thirteen 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain, and their inhibitory activity of cholesterol absorption was evaluated in Caco-2 cell line in vitro. Furthermore, top six compounds were measured by cytotoxicity and partition coefficient, and 2-azetidinone analogue 9e was selected for in vivo study. Finally, 9e considerably reduced total cholesterol, LDL-C, FFA and triglyceride in the serum and increased the rate of HDL-C to total cholesterol, suggesting it could regulate the lipid metabolism and act as a potent CAI.


Assuntos
Azetidinas/química , Azetidinas/farmacologia , Colesterol/metabolismo , Pirróis/química , Pirróis/farmacologia , Sulfanilamidas/química , Animais , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/toxicidade , Apoptose/efeitos dos fármacos , Azetidinas/toxicidade , Peso Corporal/efeitos dos fármacos , Células CACO-2 , LDL-Colesterol/sangue , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos/sangue , Células HEK293 , Humanos , Óxido Nítrico/metabolismo , Pirróis/síntese química , Pirróis/toxicidade , Sulfanilamida , Triglicerídeos/sangue
14.
J Med Chem ; 67(7): 5437-5457, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564512

RESUMO

The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.


Assuntos
Linfoma , Proteínas Serina-Treonina Quinases , Humanos , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HeLa , Fosforilação , Linfoma/tratamento farmacológico
15.
Eur J Med Chem ; 267: 116211, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359537

RESUMO

The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.


Assuntos
Neoplasias , Diester Fosfórico Hidrolases , Pirofosfatases , Humanos , Diester Fosfórico Hidrolases/metabolismo , Nucleotidiltransferases/metabolismo , Imunoterapia
16.
Res Sq ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883705

RESUMO

Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.

18.
ACS Med Chem Lett ; 14(4): 450-457, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077390

RESUMO

RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.

19.
Chemosphere ; 342: 140218, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734503

RESUMO

The impact of high antibiotic and heavy metal pollution levels on biological nitrogen removal in wastewater treatment plants (WWTPs) remains poorly understood, posing a global concern regarding the issue spread of antibiotic resistance induced by these contaminants. Herein, we investigated the effects of gadolinium (Gd) and sulfamethoxazole (SMX), commonly found in medical wastewater, on biological nitrogen removal systems and microbial characteristics, and the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). Our findings indicated that high SMX and Gd(III) concentrations adversely affected nitrification and denitrification, with Gd(III) exerting a strong inhibitory effect on microbial activity. Metagenomic analysis revealed that high SMX and Gd(III) concentrations could reduce microbial diversity, with Thauera and Pseudomonas emerging as dominant genera across all samples. While the relative abundance of most ARGs decreased under single Gd(III) stress, MRGs increased, and nitrification functional genes were inhibited. Conversely, combined SMX and Gd(III) pollution increased the relative abundance of intl1. Correlation analysis revealed that most genera could host ARGs and MRGs, indicating co-selection and competition between these resistance genes. However, most denitrifying functional genes exhibited a positive correlation with MRGs. Overall, our study provides novel insights into the impact of high concentrations of antibiotics and heavy metal pollution in WWTPs, and laying the groundwork for the spread and proliferation of resistance genes under combined SMX and Gd pollution.


Assuntos
Metais Pesados , Microbiota , Sulfametoxazol/farmacologia , Gadolínio , Desnitrificação , Nitrogênio , Genes Bacterianos , Antibacterianos/farmacologia
20.
Chemosphere ; 311(Pt 1): 137084, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334754

RESUMO

Recently, pharmaceutical and personal care products (PPCPs) have been of wide concern due to their ecological toxicity, persistence, and ubiquity in aquatic environments. Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) have shown great potential for eliminating PPCPs due to their superior oxidation ability and adaptability. Biochar-based nanohybrids have been employed as emerging catalysts for peroxymonosulfate (PMS) activation. Until now, few researchers have summarized PMS activation by biochar-based catalysts for PPCPs removal. In this review, the types, sources, fates, and ecological toxicities of PPCPs were first summarized. Furthermore, various preparation and modification methods of biochar-based catalysts were systematically introduced. Importantly, the application of activating PMS with biochar-based multifunctional nanocomposites for eliminating PPCPs was reviewed. The influencing factors, such as catalysts dosage, PMS dosage, solution pH, temperature, anions, natural organic matters (NOMs), and pollutants concentration were broadly discussed. Biochar-based catalysts can act as electron donors, electron acceptors, and electron shuttles to activate PMS for the removal of PPCPs through radical pathways or/and non-radical pathways. The degradation mechanisms of PPCPs are correlated with persistent free radicals (PFRs), metal species, defective sites, graphitized degree, functional groups, electronic attributes, and the hybridization modes of biochar-based catalysts. Finally, the current problems and further research directions on the industrial application of biochar-based nanocomposites were proposed. This study provides some enlightenment for the efficient removal of PPCPs with biochar-based catalysts in PMS-AOPs.


Assuntos
Carvão Vegetal , Cosméticos , Peróxidos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa