Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 36(20): 3062-3079, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28864543

RESUMO

Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Transporte Proteico
2.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1001-1009, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342273

RESUMO

(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Šresolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Šresolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.


Assuntos
Flavoproteínas/química , Animais , Cristalografia , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Drosophila melanogaster , Flavoproteínas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa