Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(26): 6675-6684, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607093

RESUMO

Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.


Assuntos
Dinoprostona/metabolismo , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos , Músculo Esquelético/citologia , Mioblastos Esqueléticos/citologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Sci Rep ; 12(1): 4795, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314737

RESUMO

Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.


Assuntos
Cromatina , Peixe-Zebra , Animais , Sítios de Ligação , Células Cultivadas , Cromatina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estresse Mecânico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Nat Commun ; 13(1): 1439, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301320

RESUMO

During aging, the regenerative capacity of muscle stem cells (MuSCs) decreases, diminishing the ability of muscle to repair following injury. We found that the ability of MuSCs to regenerate is regulated by the primary cilium, a cellular protrusion that serves as a sensitive sensory organelle. Abolishing MuSC cilia inhibited MuSC proliferation in vitro and severely impaired injury-induced muscle regeneration in vivo. In aged muscle, a cell intrinsic defect in MuSC ciliation was associated with the decrease in regenerative capacity. Exogenous activation of Hedgehog signaling, known to be localized in the primary cilium, promoted MuSC expansion, both in vitro and in vivo. Delivery of the small molecule Smoothened agonist (SAG1.3) to muscles of aged mice restored regenerative capacity leading to increased strength post-injury. These findings provide fresh insights into the signaling dysfunction in aged MuSCs and identify the ciliary Hedgehog signaling pathway as a potential therapeutic target to counter the loss of muscle regenerative capacity which accompanies aging.


Assuntos
Cílios , Músculo Esquelético , Envelhecimento/fisiologia , Animais , Proteínas Hedgehog , Camundongos , Músculo Esquelético/fisiologia , Mioblastos
4.
Cell Metab ; 32(2): 309-319.e7, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32521232

RESUMO

Most organs use fatty acids (FAs) as a key nutrient, but little is known of how blood-borne FAs traverse the endothelium to reach underlying tissues. We conducted a small-molecule screen and identified niclosamide as a suppressor of endothelial FA uptake and transport. Structure/activity relationship studies demonstrated that niclosamide acts through mitochondrial uncoupling. Inhibitors of oxidative phosphorylation and the ATP/ADP translocase also suppressed FA uptake, pointing principally to ATP production. Decreasing total cellular ATP by blocking glycolysis did not decrease uptake, indicating that specifically mitochondrial ATP is required. Endothelial FA uptake is promoted by fatty acid transport protein 4 (FATP4) via its ATP-dependent acyl-CoA synthetase activity. Confocal microscopy revealed that FATP4 resides in the endoplasmic reticulum (ER), and that endothelial ER is intimately juxtaposed with mitochondria. Together, these data indicate that mitochondrial ATP production, but not total ATP levels, drives endothelial FA uptake and transport via acyl-CoA formation in mitochondrial/ER microdomains.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Elife ; 92020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315013

RESUMO

Endothelial cells (ECs) are widely heterogenous depending on tissue and vascular localization. Jambusaria et al. recently demonstrated that ECs in various tissues surprisingly possess mRNA signatures of their underlying parenchyma. The mechanism underlying this observation remains unexplained, and could include mRNA contamination during cell isolation, in vivo mRNA paracrine transfer from parenchymal cells to ECs, or cell-autonomous expression of these mRNAs in ECs. Here, we use a combination of bulk RNASeq, single-cell RNASeq datasets, in situ mRNA hybridization, and most importantly ATAC-Seq of FACS-isolated nuclei, to show that cardiac ECs actively express cardiomyocyte myofibril (CMF) genes and have open chromatin at CMF gene promoters. These open chromatin sites are enriched for sites targeted by cardiac transcription factors, and closed upon expansion of ECs in culture. Together, these data demonstrate unambiguously that the expression of CMF genes in ECs is cell-autonomous, and not simply a result of technical contamination or paracrine transfers of mRNAs, and indicate that local cues in the heart in vivo unexpectedly maintain fully open chromatin in ECs at genes previously thought limited to cardiomyocytes.


Assuntos
Cromatina/metabolismo , Células Endoteliais/metabolismo , Transcriptoma , Animais , Cromatina/genética , Coração , Camundongos , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo
6.
Front Cardiovasc Med ; 7: 582407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134326

RESUMO

Background: No medical therapies exist to treat right ventricular (RV) remodeling and RV failure (RVF), in large part because molecular pathways that are specifically activated in pathologic human RV remodeling remain poorly defined. Murine models have suggested involvement of Wnt signaling, but this has not been well-defined in human RVF. Methods: Using a candidate gene approach, we sought to identify genes specifically expressed in human pathologic RV remodeling by assessing the expression of 28 WNT-related genes in the RVs of three groups: explanted nonfailing donors (NF, n = 29), explanted dilated and ischemic cardiomyopathy, obtained at the time of cardiac transplantation, either with preserved RV function (pRV, n = 78) or with RVF (n = 35). Results: We identified the noncanonical WNT receptor ROR2 as transcriptionally strongly upregulated in RVF compared to pRV and NF (Benjamini-Hochberg adjusted P < 0.05). ROR2 protein expression correlated linearly to mRNA expression (R 2 = 0.41, P = 8.1 × 10-18) among all RVs, and to higher right atrial to pulmonary capillary wedge ratio in RVF (R 2 = 0.40, P = 3.0 × 10-5). Utilizing Masson's trichrome and ROR2 immunohistochemistry, we identified preferential ROR2 protein expression in fibrotic regions by both cardiomyocytes and noncardiomyocytes. We compared RVF with high and low ROR2 expression, and found that high ROR2 expression was associated with increased expression of the WNT5A/ROR2/Ca2+ responsive protease calpain-µ, cleavage of its target FLNA, and FLNA phosphorylation, another marker of activation downstream of ROR2. ROR2 protein expression as a continuous variable, correlated strongly to expression of calpain-µ (R 2 = 0.25), total FLNA (R 2 = 0.67), calpain cleaved FLNA (R 2 = 0.32) and FLNA phosphorylation (R 2 = 0.62, P < 0.05 for all). Conclusion: We demonstrate robust reactivation of a fetal WNT gene program, specifically its noncanonical arm, in human RVF characterized by activation of ROR2/calpain mediated cytoskeleton protein cleavage.

7.
Curr Opin Physiol ; 12: 44-50, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31976384

RESUMO

Endothelial cells line all blood vessels in vertebrates. These cells contribute to whole-body nutrient distribution in a variety of ways, including regulation of local blood flow, regulation of trans-endothelial nutrient transport, and paracrine effects. Obesity elicits dramatic whole-body nutrient redistribution, in particular of fat. We briefly review here recent progress on understanding endothelial fat transport; the impact of obesity on the endothelium; and, conversely, how endothelial function can modulate obesity.

8.
Cell Rep ; 27(13): 3939-3955.e6, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242425

RESUMO

The impact of glucose metabolism on muscle regeneration remains unresolved. We identify glucose metabolism as a crucial driver of histone acetylation and myogenic cell fate. We use single-cell mass cytometry (CyTOF) and flow cytometry to characterize the histone acetylation and metabolic states of quiescent, activated, and differentiating muscle stem cells (MuSCs). We find glucose is dispensable for mitochondrial respiration in proliferating MuSCs, so that glucose becomes available for maintaining high histone acetylation via acetyl-CoA. Conversely, quiescent and differentiating MuSCs increase glucose utilization for respiration and have consequently reduced acetylation. Pyruvate dehydrogenase (PDH) activity serves as a rheostat for histone acetylation and must be controlled for muscle regeneration. Increased PDH activity in proliferation increases histone acetylation and chromatin accessibility at genes that must be silenced for differentiation to proceed, and thus promotes self-renewal. These results highlight metabolism as a determinant of MuSC histone acetylation, fate, and function during muscle regeneration.


Assuntos
Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo , Regeneração , Acetilação , Animais , Glucose , Histonas , Espectrometria de Massas , Camundongos , Músculo Esquelético/citologia , Análise de Célula Única
9.
NPJ Regen Med ; 3: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479480

RESUMO

Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.

10.
Elife ; 42015 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-25621566

RESUMO

The Kang et al. (2011), published in Nature in 2011. The experiments that will be replicated are those reported in Figures 3B, 3C, 3E, and 4A. In these experiments, Kang et al. (2011) demonstrate the phenomenon of oncogene-induced cellular senescence and immune-mediated clearance of senescent cells after intrahepatic injection of NRAS (Figures 2I, 3B, 3C, and 3E). Additionally, Kang et al. (2011) show the specific necessity of CD4+ T cells for immunoclearance of senescent cells (Figure 4A). The Reproducibility Project: Cancer Biology is a collaboration between the eLife.


Assuntos
Carcinogênese/patologia , Senescência Celular , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Análise de Variância , Animais , Feminino , Humanos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa