Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 12(2): 827-32, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268908

RESUMO

We demonstrate new molecular-level concepts for constructing nanoscopic metal oxide objects. First, the diameters of metal oxide nanotubes are shaped with angstrom-level precision by controlling the shape of nanometer-scale precursors. Second, we measure (at the molecular level) the subtle relationships between precursor shape and structure and final nanotube curvature. Anionic ligands are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of the 'shaped' precursors.


Assuntos
Silicatos de Alumínio/química , Nanotubos/química , Ligantes , Modelos Moleculares , Tamanho da Partícula
2.
J Am Chem Soc ; 133(14): 5397-412, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417255

RESUMO

We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy ((27)Al liquid-state, (27)Al and (29)Si solid-state MAS), and dynamic light scattering. Together with structural optimization of key experimentally identified species by solvated density functional theory calculations, this study reveals the existence of intermediates with bonding environments, as well as intrinsic curvature, similar to the structure of the final nanotube product. We show that "proto-nanotube-like" intermediates with inherent curvature form in aqueous synthesis solutions immediately after initial hydrolysis of reactants, disappear from the solution upon heating to 95 °C due to condensation accompanied by an abrupt pH decrease, and finally form ordered single-walled aluminosilicate nanotubes. Detailed quantitative analysis of NMR and ESI-MS spectra from the relevant aluminosilicate, aluminate, and silicate solutions reveals the presence of a variety of monomeric and polymeric aluminate and aluminosilicate species (Al(1)Si(x)-Al(13)Si(x)), such as Keggin ions [AlO(4)Al(12)(OH)(24)(H(2)O)(12)](7+) and polynuclear species with a six-membered Al oxide ring unit. Our study also directly reveals the complexation of aluminate and aluminosilicate species with perchlorate species that most likely inhibit the formation of larger condensates or nontubular structures. Integration of all of our results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles.

3.
Nat Commun ; 5: 3342, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531275

RESUMO

Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with covalently bonded primary amine moieties on their inner wall, synthesized through a one-step approach. Conclusive molecular-level structural information on the amine-functionalized nanotubes is obtained through multiple solid-state techniques. The amine-functionalized nanotubes maintain a high carbon dioxide adsorption capacity while significantly suppressing the adsorption of methane and nitrogen, thereby leading to a large enhancement in adsorption selectivity over unfunctionalized nanotubes (up to four-fold for carbon dioxide/methane and ten-fold for carbon dioxide/nitrogen). The successful synthesis of single-walled nanotubes with functional, covalently-bound organic moieties may open up possibilities for new nanotube-based applications that are currently inaccessible to carbon nanotubes and other related materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa