Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Environ Sci Technol ; 58(6): 2847-2858, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299532

RESUMO

Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.


Assuntos
Microbiota , Trimetoprima , Trimetoprima/farmacologia , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
2.
Phys Chem Chem Phys ; 26(8): 7166-7176, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349087

RESUMO

The Volmer step in alkaline hydrogen evolution reactions (HERs), which supplies H* to the following steps by cleaving H-O-H bonds, is considered the rate-determining step of the overall reaction. The Volmer step involves water dissociation and adsorbed hydroxyl (*OH) desorption; Ru-based catalysts display a compelling water dissociation process in an alkaline HER. Unfortunately, the strong affinity of Ru for *OH blocks the active sites, resulting in unsatisfactory performance during HER processes. Hence, this study investigates a series of key descriptors (ΔG*H2O, ΔG*H-OH, ΔG*H, and ΔG*OH) of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, or Pt)-Ru/Mo2Ti2C3O2 to systematically explore the effects of bimetallic site interactions on the kinetics of the Volmer step. The results indicate that bimetallic catalysts effectively reduced the strong adsorption of *OH on Ru sites; especially, the NiRu diatomic state shows the highest electron-donating ability, which promoted the smooth migration of *OH from Ru sites to Ni sites. Therefore, Ru, Ni and MXenes are suitable to serve as water adsorption and dissociation sites, *OH desorption sites, and H2 release sites, respectively. Ultimately, NiRu/Mo2Ti2C3O2 promotes Volmer kinetics and has the potential to improve alkaline HERs. This work provides theoretical support for the construction of synergistic MXene-based diatomic catalysts and their wide application in the field of alkaline HERs.

3.
Environ Res ; 258: 119393, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857856

RESUMO

Constructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal. Moreover, the high removal efficiencies of Cu2+, Pb2+ and Cd2+ (above 90%) except for Zn2+ were obtained in each system. However, the exposure of heavy metals decreased phosphorus removal while had little effect on nitrogen removal. The influent load and intermittent aeration implementation led to a significant shift in microbial community structures, but microbial biodiversity and abundance decreased under the exposure of heavy metals. Particularly, Thiobacillus and Ferritrophicum, associated with sulfur autotrophic denitrification and iron autotrophic denitrification, were more abundant in pyrite-based wetland systems.

4.
Environ Res ; 252(Pt 2): 118905, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604480

RESUMO

Persulfate oxidation (PS) is widely employed as a promising alternative for waste activated sludge pretreatment due to the capability of generating free radicals. The product differences and microbiological mechanisms by which PS activation triggers WAS digestion through multiple modes need to be further investigated. This study comprehensively investigated the effects of persulfate oxidation activated through multiple modes, i.e., ferrous, zero-valent iron (ZVI), ultraviolet (UV) and heat, on the performance of sludge digestion. Results showed that PS_ZVI significantly accelerated the methane production rate to 12.02 mL/g VSS. By contrast, PS_Heat promoted the sludge acidification and gained the maximum short-chain fatty acids (SCFAs) yield (277.11 ± 7.81 mg COD/g VSS), which was 3.41-fold compared to that in PS_ZVI. Moreover, ferrous and ZVI activated PS achieved the oriented conversion of acetate, the proportions of which took 73% and 78%, respectively. MiSeq sequencing results revealed that PS_Heat and PS_UV evidently enriched anaerobic fermentation bacteria (AFB) (i.e., Macellibacteroides and Clostridium XlVa). However, PS_Ferrous and PS_ZVI facilitated the enrichment of Woesearchaeota and methanogens. Furthermore, molecular ecological network and mantel test revealed the intrinsic interactions among the multiple functional microbes and environmental variables. The homo-acetogens and sulfate-reducing bacterial had potential cooperative and symbiotic relationships with AFB, while the nitrate-reducing bacteria displayed distinguishing ecological niches. Suitable activation modes for PS pretreatments resulted in an upregulation of genes expression responsible for digestion. This study established a scientific foundation for the application of sulfate radical-based oxidation on energy or high value-added chemicals recovery from waste residues.


Assuntos
Oxirredução , Esgotos , Sulfatos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Sulfatos/metabolismo , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Bactérias/genética , Reatores Biológicos/microbiologia , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo
5.
Environ Res ; 258: 119461, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909945

RESUMO

Microaerobic sludge bed systems could align with low-energy, reasonable carbon-nitrogen (C/N) ratio, and synchronous removal objectives during wastewater treatment. However, its ability to treat municipal wastewater (MW) with varying low C/N ratio, low NH4+ concentration, along with managing sludge bulking and loss are still unclear. Against this backdrop, this study investigated the performance of an Upflow Microaerobic Sludge Bed Reactor (UMSR) treating MW characterized by varying low C/N ratios and low NH4+ concentrations. The study also thoroughly examined associated sludge bulking and loss, pollutant removal efficiencies, sludge settleability, microbial community structures, functional gene variations, and metabolic pathways. Findings revealed that the effluent NH4+-N concentration gradually decreased to 0 mg/L with a decrease in the C/N ratio, whereas the effluent COD was unaffected by the influent, maintaining a concentration below 50 mg/L. Notably, TN removal efficiency reached 90% when C/N ratio was 3. The decrease in the C/N ratio (C/N ratio was 1) increased microbial community diversity, with abundances of AOB, AnAOB, aerobic denitrifying bacteria, and anaerobic digestion bacteria reaching 8.34%, 0.96%, 5.07%, and 9.01%, respectively. Microorganisms' metabolic pathways significantly shifted, showing increased carbohydrate and cofactor/vitamin metabolism and decreased amino acid metabolism and xenobiotic biodegradation. This study not only provides a solution for the effluent of different pre-capture carbon processes but also demonstrates the UMSR's capability in managing low C/N ratio municipal wastewater and emphasizes the critical role of microbial community adjustments and functional gene variations in enhancing nitrogen removal efficiency.

6.
J Environ Manage ; 360: 121110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733846

RESUMO

Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.


Assuntos
Eletrodos , Fermentação , Hidrogênio , Ferro , Fosfatos , Esgotos , Hidrogênio/metabolismo , Ferro/química , Ferro/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Fósforo/química , Fósforo/metabolismo
7.
Phys Chem Chem Phys ; 25(19): 13728-13740, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158387

RESUMO

The electrochemical hydrogen evolution reaction (HER) in alkaline media provides an environmentally friendly industrial application approach to replace traditional fossil energy. The search for efficient, low-cost, and durable active electrocatalysts is central to the development of this area. Transition metal carbides (MXenes) have been emerging as a new family of two-dimensional (2D) materials that have great potential in the HER. Herein, density functional theory calculations are performed to systematically explore the structural and electronic properties and alkaline HER performances of Mo-based MXenes, as well as the influence of species and the coordination environment of single atoms on the improvement of the electrocatalytic activity of Mo2Ti2C3O2. The results show that Mo-based MXenes (Mo2CO2, Mo2TiC2O2, and Mo2Ti2C3O2) exhibit excellent H binding ability, while slow water decomposition kinetics hinders their HER performance. Replacing the O-terminal of Mo2Ti2C3O2 with a Ru single-atom (RuS-Mo2Ti2C3O2) could promote the decomposition of water owing to the stronger electron-donating ability of the atomic state Ru. In addition, Ru could also improve the binding ability of the catalyst to H by adjusting the surface electron distribution. As a result, RuS-Mo2Ti2C3O2 exhibits excellent HER performance with a water decomposition potential barrier of 0.292 eV and a H adsorption Gibbs free energy of -0.041 eV. These explorations bring new prospects for single atoms supported on Mo-based MXenes in the alkaline hydrogen evolution reaction.

8.
J Environ Manage ; 326(Pt A): 116759, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399888

RESUMO

This study aimed to extract orthophosphate (ortho-P) from lipid-rich waste AF liquor (AFL) by Mg/Al layered double hydroxides (Mg/Al LDHs) adsorption, evaluate the influence of carbonate and investigate adsorption mechanisms. The carbonate influence experiment using synthetic P-rich wastewater indicated that low carbonate level was favorable for P extraction by LDHs. And then, real AFL rich in volatile fatty acids (VFAs), carbonate and ortho-P was applied as adsorbate to explore the Mg/Al LDHs adsorption performance. Experimental results indicated that 4 g/L Mg/Al LDHs could extract 88.3% of ortho-P from the AFL with low carbonate level (4829.83 mg CaCO3/L), and the adsorption quantity was 62.99 mg P/g LDHs, however, negligible VFAs were extracted. Kinetics and mechanisms analysis indicated that adsorption of P onto Mg/Al LDHs was a rapid physiochemical process, including ion exchange and surface adsorption. Finally, the nutrients release test confirmed the slow-release property of intercalated P.


Assuntos
Hidróxidos , Fósforo , Fermentação , Anaerobiose , Magnésio , L-Lactato Desidrogenase , Lipídeos
9.
J Environ Manage ; 346: 118967, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714089

RESUMO

Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa). Therefore, this study employed persulfate (PS) oxidation and C3-C5 incomplete-oxidative sulfate reducing bacteria (io-SRB) metabolizers to tailor SCFAs conversion from WAS fermentation. The decomposition efficiency, performance of SCFAs production was investigated. Results showed that the PS significantly promoted WAS decomposition, with a dissolution rate of 39.4%, which is 26.0% higher than the un-treated test. Furthermore, SCFAs yields were increased to 462.7 ± 42 mg COD/g VSS in PS-HBu-SRB, which was 7.4 and 2.2 times higher than that of un-treated and sole PS tests, respectively. In particular, the sum of acetate and HPr reached the peak value of 85%, indicating that HBu-SRB mediation promoted the biotransformation of HBu and macromolecular organics by reducing the [Formula: see text] restriction. Meanwhile, sulfate radical (SO4∙-)-based oxidation (SR-AOPs) was effective in the decomposition of WAS, the oxidative product, i.e., sulfate served the necessary electron acceptor for the metabolism of io-SRB. Further analysis of Mantel test revealed the cluster of the functional genus and their interaction with environmental variables. Additionally, molecular ecological network analysis explored the potential synergistic and competitive relationships between critical genera. Additionally, the potential synergistic and competitive relationships between critical genera was explored by molecular ecological network analysis. This study provides new insights into the integration of SR-AOPs with microbial mediation in accelerating SCFAs production from WAS fermentation.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Acetatos , Sulfatos , Concentração de Íons de Hidrogênio , Anaerobiose
10.
Environ Monit Assess ; 195(12): 1399, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37914972

RESUMO

Heavy metal concentrations represent important pollution evaluation indices, and it is necessary to assess the potential environmental and health risks from heavy metals associated with coking wastes from coking plants. In this study, coking sludge (CS), tar residue (TR), coke powder (CP), and sulfur paste (SP) from three coking plants (Plant A, Plant B, and Plant C) in central, western, and southern Shanxi Province and from soils surrounding Plant A were selected as the research objects, and the distributions of Cu, Ni, Pb, Zn, Mn, Cd, and Cr were determined. The results showed that Cd in the four solid wastes far exceeded the soil background value by a factor of 16~195, and the contents of Pb in TR (three plants) and CS (Plant C) exceeded the soil background values 19.70-, 23.57-, 14.46-, and 12.56-fold, respectively. Similarly, the concentrations of Cu, Ni, Pb, Zn, and Cd in soils were higher than the background values by factors of 31.18, 8.35, 34.79, 29.48, and 3.43, respectively. In addition, the Cu, Ni, Pb, and Cr in the four solid wastes and soils mainly existed in the residual state. As depth increased, the overall Ni, Pb, Mn, and Cd concentrations in soils increased. The high ecological risks associated with the four solid wastes were mainly due to the enrichment of Cd. Workers in coking plants face certain Cr health risks. This study provides theoretical support for the coking industry with respect to the treatment, disposal, and management of solid wastes.


Assuntos
Coque , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Resíduos Sólidos , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Esgotos/química , China
11.
Environ Res ; 205: 112434, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856169

RESUMO

Photocatalytic removal of NH3-N is expected to be an alternative to the biological method that accompanied with high energy consumption and secondary pollution. However, NH3-N is always oxidized into nitrate and nitrite during the photocatalytic processes, which also need to be removed from the water. Herein, the g-C3N4/rGO/TiO2 Z-scheme photocatalytic system was prepared and used for the NH3-N removal. The results showed the rate constant of NH3-N conversion on it was 0.705 h-1, 1.7 times as high as that on g-C3N4/TiO2, and most of the NH3-N were converted into gaseous products. And the experiment result indicated NH3-N and NO3- in water could enhance the removal of each other. According to the results, the main reaction mechanism is speculated as: ·OH radicals and ·O2- radicals were generated on TiO2 and oxidized the NH3-N into NO3-, and the latter was reduced into non-toxic N2 on the conduction band of g-C3N4. Finally, NH3-N removal performance for actual coking wastewater was investigated, and the stability of the photocatalyst was tested. This work provides some theoretical basis for the two-step degradation of pollutants by Z-scheme photocatalytic system.


Assuntos
Amônia , Água , Catálise , Desnitrificação , Grafite , Nitrificação , Titânio
12.
Environ Res ; 210: 112928, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151658

RESUMO

Sulfadiazine (SDZ) is one of the most representative sulfonamides antibiotics, and its biodegradation has become a research hotspot in recent years. The present study innovatively adopted a microbial fuel cells with a Nickel (Ⅱ) and Manganese (Ⅱ)-decorated graphite felt bioanode (Ni(Ⅱ)/Mn (Ⅱ)-MFCs) to remove SDZ. The results demonstrated that the Ni(Ⅱ)/Mn (Ⅱ)-MFCs exhibited improved electrochemical performance, with a higher power density (742.98 ± 58.33 mW/m2) compared to the control MFCs (678.34 ± 52.87 mW/m2), an overall lower anode potential, and a larger double layer area (cyclic voltammetry). After 5 months of operation, approximately 97.95% of 30 mg/L SDZ was degraded within 120 h, which was 11.46% higher than that of the control MFCs. Moreover, SDZ and its byproducts could be better mineralized in the Ni(Ⅱ)/Mn (Ⅱ)-MFCs than the control, and the biotoxicity of SDZ towards Escherichia coli and Vibro qinghaiensis sp. Q67 could be greatly decreased after treatment with the modified MFCs. Based on the metabolites, we hypothesized that the chemical reactions hydroxylation, ammoxidation, SO2-extrusion, sulfur-reduction, etc. played a significant role in SDZ biodegradation. A microbial community analysis revealed that Dechloromonas (2.37%), Denitratisoma (5.32%) and Lentimicrobium (26.35%) were the dominant functional microbes in the Ni(Ⅱ)/Mn (Ⅱ)-MFCs. This study may provide insights and a theoretical basis for the biodegradation of sulfonamides and thus may facilitate further investigations and relevant findings.


Assuntos
Grafite , Sulfadiazina , Eletroquímica , Escherichia coli , Grafite/química , Manganês/toxicidade , Níquel/toxicidade , Sulfadiazina/metabolismo
13.
Environ Res ; 215(Pt 3): 114077, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981610

RESUMO

Bioelectrochemical systems were proposed as a promising approach for the efficient valorization of biomass into 6-8 carbon atom medium-chain fatty acids (MCFAs), the precursors for high value-added chemicals or renewable energy, via acetyl-CoA-mediated chain elongation (CE). To achieve CE processes, exogenous electron donors (EDs), e.g., ethanol or lactic acid, were normally prerequisites. This research built a microbial electrolysis cell (MEC) for MCFAs biosynthesis from acetate without exogenous EDs addition. A wide range of applied voltages (0.6-1.2 V) was first employed to investigate the bioelectrocatalyzing response. The results show that caproate and butyrate were the main products formed from acetate under different applied voltages. Maximum caproate concentration (501 ± 12 mg COD/L) was reached at 0.8 V on day 3. Under this applied voltage, hydrogen partial pressure stabilized at about 0.1 bar, beneficial for MCFA production. Electron and carbon balances revealed that the electron-accepting capacity achieved 32% at 0.8 V, showing the highest interspecies electron transfer efficiency. Most of the carbon was recovered in the form of caproate (carbon loss was 9%). MiSeq sequencing revealed Rhodobacter and Clostridium_sensu_stricto playing the crucial role in the biosynthesis of caproate, while Acetobacterium, Acetoanaerobium, and Acetobacter represented the main ED contributors. Four available flora, i.e., homo-acetogen, anaerobic fermentation bacteria, electrode active bacteria, and nitrate-reducing bacteria, interacted and promoted caproate synthesis by molecular ecological network analysis.


Assuntos
Caproatos , Elétrons , Acetatos , Acetilcoenzima A , Butiratos , Carbono , Etanol , Ácidos Graxos , Fermentação , Hidrogênio , Ácido Láctico , Nitratos
14.
Environ Res ; 203: 111875, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403665

RESUMO

Electro-fermentation (EF) is an attractive way to implement the chain elongation (CE) process, by controlling the fermentation environment and reducing the dosage of external electron donors (EDs). However, besides the coexistence performance of external EDs and electrode, applications of EF technology on the fermentation broth containing both EDs and electron acceptors during CE process, are all still limited. The current study investigated the contribution of EF to caproate production, under different acetate: ethanol ratios (RA/E). The effect of multiple EDs, both from ethanol and the bio-cathode, on caproate production, was also assessed. A proof-of-concept, based on experimental data, was presented for the EF-mediated ethanol-driven CE process. Experimental results showed that ethanol, together with the additional electron donors from the bio-cathode, was beneficial for the stable caproate production. The caproate concentration increased with the decrease of RA/E, while the bio-cathode further contributed to 10.7%-26.1 % increase of caproate concentration. Meanwhile, the hydrogen partial pressure tended to 0.10 ± 0.01 bar in all controlled EF reactors, thus favoring caproate production. This was attributed to the increased availability EDs, i.e., hydrogen and ethanol, generated by the electrode and electrochemically active bacteria (EAB), which might create multiple additional pathways to achieve caproate production. Molecular ecological networks analysis of the key microbiomes further revealed underlying cooperative relationships, beneficial to the chain elongation process. The genus Clostridium_sensu_stricto, as the dominant microbial community, was positively related to acetogens, EAB and fermenters.


Assuntos
Caproatos , Etanol , Acetatos , Reatores Biológicos , Fermentação
15.
J Environ Manage ; 316: 115236, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568017

RESUMO

The development of slow-release carbon sources is an effective biological treatment to remove nutrients from wastewater with low carbon-to-nitrogen ratio (C/N). Most filling-type slow-release carbon could not fulfil the needs of current wastewater treatment plants (WWTPs) process. And most adding-type slow-release carbon sources were prepared using some expensive chemical materials. In this study, combining the advantages of the aforementioned types, a novel adding-type wastepaper-flora (AT-WF) slow-release carbon source was proposed, aiming to realise wastepaper recycling in WWTPs. The screening and identification of the mixed flora, AT-WF carbon source release behaviour, and denitrification performance were investigated. The results showed that through the proposed screening method, a considerable proportion of cellulose-degradation-related genera was enriched, and the cellulose degradation ability and ratio of readily available carbon sources of flora T4, S4 and S5 were effectively strengthened. AT-WF had significant carbon release ability and stability, with an average total organic carbon (TOC) release of 8.82 ± 2.36 mg/g. Kinetic analysis showed that the entire carbon release process was more consistent with the first-order equation. Piecewise fitting with the Ritger-Peppas equation exhibited that the rapid-release (RR) stage was skeleton dissolution and the slow-release (SR) stage was Fick diffusion. Denitrification efficiency can achieve a high average removal efficiency of 94.17%, which could theoretically contribute 11.2% more to the total inorganic nitrogen (TIN) removal. Thus, this study indicated that AT-WF could be utilised as an alternative carbon source in WWTPs.


Assuntos
Carbono , Desnitrificação , Reatores Biológicos , Celulose , Estudos de Viabilidade , Cinética , Nitrogênio , Águas Residuárias
16.
Water Sci Technol ; 86(7): 1848-1857, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36240316

RESUMO

In this study, a continuous stirred-tank reactor (CSTR) coupled with up-flow anaerobic sludge beds (UASBs) reactor was successfully developed for enhancing methane production and carbon recovery rate from cornstalks. Acetic acid production was higher in regions A than in B and C. The methane percentage achieved at 75.98% of total gas and methane production of cornstalks was up to 520.07 mL/g, during the stable operation period. The carbon of recovery rate, represented substrates converted to methane gas, reached 69.32% in stable stage. Microbial community structure analysis revealed that Paludibacter, Prevotella/Clostridium sensu stricto, and Caldisericum were the dominant bacteria for the degradation of cellulose, lignin, and other refractory macromolecules in regions A, B, and C, respectively. Methanobacterium and Methanolinea were the two major genera, accounting for methanogenesis generation.


Assuntos
Microbiota , Esgotos , Acetatos , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Carbono , Fermentação , Lignina/metabolismo , Metano/metabolismo , Esgotos/microbiologia
17.
Environ Monit Assess ; 195(1): 99, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369311

RESUMO

Heavy metal pollution in the soil surrounding solid wastes from coking plants poses potential threats to human health and has attracted widespread attention. This study is the first to assess the spatial variability and risks of heavy metals in the soil surrounding solid waste from coking plants. The results showed that the concentrations of Cu, Ni, Pb, and Cd in the soil were much higher than the background value of the soil. Solid waste had a clear influence on the contents of Ni, Cd, Mn, Pb, and Cr in the soil. The ecological risk assessment of heavy metal pollution demonstrated that the pollution degree of Cu, Pb, and Cd was more serious than others, and the ecological risk of heavy metals was mainly caused by Cd in the soil. The human health risk assessment showed that adults and children near coking plants might face carcinogenic risk from exposure to Cr. This study can provide a theoretical basis for the prevention and management of soil heavy metal pollution surrounding solid waste in coking plants.


Assuntos
Coque , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Resíduos Sólidos , Poluentes do Solo/análise , Cádmio , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
18.
J Environ Sci (China) ; 108: 188-200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465432

RESUMO

Environment-friendly nano-catalysts capable of activating peroxymonosulfate (PMS) have received increasing attention recently. Nevertheless, traditional nano-catalysts are generally well dispersed and difficult to be separated from reaction system, so it is particularly important to develop nano-catalysts with both good catalytic activity and excellent recycling efficiency. In this work, magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides (Fe3O4/CoFeCu-LDHs) was prepared by a simple co-precipitation method and initially applied to activate PMS for the degradation of Rhodamine B (RhB). X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller method (BET), and vibrating sample magnetometer (VSM) were applied to characterize morphology, structure, specific surface area and magnetism. In addition, the effects of several key parameters were evaluated. The Fe3O4/CoFeCu-LDHs exhibited high catalytic activity, and RhB degradation efficiency could reach 100% within 20 min by adding 0.2 g/L of catalyst and 1 mmol/L of PMS into 50 mg/L of RhB solution under a wide pH condition (3.0-7.0). Notably, the Fe3O4/CoFeCu-LDHs showed good super-paramagnetism and excellent stability, which could be effectively and quickly recovered under magnetic condition, and the degradation efficiency after ten cycles could still maintain 98.95%. Both radicals quenching tests and electron spin resonance (ESR) identified both HO• and SO4•- were involved and SO4•- played a dominant role on the RhB degradation. Finally, the chemical states of the sample's surface elements were measured by X-ray photoelectron spectroscopy (XPS), and the possible activation mechanism in Fe3O4/CoFeCu-LDHs/PMS system was proposed according to comprehensive analysis.


Assuntos
Hidróxidos , Peróxidos , Rodaminas , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Environ Res ; 187: 109696, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474312

RESUMO

Extraction of short-chain fatty acids (SCFAs) from fermentation liquid of waste activated sludge (WAS) is the key bottleneck hindering its application as electron donor in denitrification. This study explores the feasibility of polyether-type polyurethane (PU)-modified layered double hydroxides (LDHs, prepared using eggshell waste as calcium source) in SCFAs adsorbing from WAS fermentation liquid (SFL). The adsorption parameters were first optimized by adsorption tests using artificial fermentation liquid (AFL). Then, adsorption kinetics, thermodynamic and isotherms were explored to further understand the adsorption mechanism. It revealed that SCFAs absorption by PU-LDHs from SFL was an endothermic and spontaneous process with positive enthalphy (ΔH◦) values and negative Gibbs free energy (ΔG◦) values. In addition, the maximum adsorption capacity of 208.0 mg SCFAs/g PU-LDHs was obtained from the Langmuir isotherm. Noting that both soluble carbohydrates and soluble proteins were simultaneously extracted, with efficiencies of 30.9%, 6.2%, respectively, compared with 62.9% SCFAs. The reuse tests confirmed that the prepared PU-LDHs can be used at least three times with high adsorptive capacity. With PU-LDHs-loaded SFL as external carbon source in the biodenitrification process, a denitrification rate of 0.014 mg NO3--N/mg mixed liquid suspended solids (MLSS)·d was recorded. This study provided a sound basis for the preparation of cost-effective biodenitrification carbon source from SFL by a novel adsorbent.


Assuntos
Poliuretanos , Esgotos , Adsorção , Desnitrificação , Ácidos Graxos Voláteis , Fermentação , Hidróxidos , Cinética
20.
Appl Microbiol Biotechnol ; 101(4): 1697-1707, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27853855

RESUMO

For quinoline-denitrifying degradation, very few researches focused on shortcut denitrification process and its bacterial community characteristics. In this study, complete and shortcut denitrification systems were constructed simultaneously for quinoline degradation. By calculation, specific quinoline removal rates were 0.905 and 1.123 g/(gVSS d), respectively, in the complete and shortcut systems, and the latter was 1.24 times of the former. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing, and quantitative PCR (qPCR) techniques based on 16S rRNA were jointly applied to compare microbial community structures of two systems. Many denitrifying bacteria phyla, classes, and genera were detected in the two systems. Phylum Proteobacteria, Class Gammaproteobacteria, and Genus Alicycliphilus denitrificans were the dominant contributors for quinoline-denitrifying degradation. In the shortcut denitrification system, main and specific strains playing crucial roles were more; the species richness and the total abundance of functional genes (narG, nirS, nirK, and nosZ) were higher compared with the complete denitrification system. It could be supposed that inorganic-nitrogen reductase activity of bacterial community was stronger in the shortcut denitrification system, which was the intrinsic reason to result in higher denitrification rate.


Assuntos
Bactérias/metabolismo , Quinolinas/metabolismo , Bactérias/enzimologia , Bactérias/genética , Eletroforese em Gel de Gradiente Desnaturante , Desnitrificação/genética , Desnitrificação/fisiologia , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Proteobactérias/enzimologia , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa