RESUMO
The mechanisms by which the sensitivity of naive CD4+ T cells to stimulation by the cognate antigen via the T cell antigen receptor (TCR) determines their differentiation into distinct helper T cell subsets remain elusive. Here we demonstrate functional collaboration of the ubiquitin E3 ligases Itch and WWP2 in regulating the strength of the TCR signal. Mice lacking both Itch and WWP2 in T cells showed spontaneous autoimmunity and lung inflammation. CD4+ T cells deficient in Itch and WWP2 exhibited hypo-responsiveness to TCR stimulation and a bias toward differentiation into the TH2 subset of helper T cells. Itch and WWP2 formed a complex and cooperated to enhance TCR-proximal signaling by catalyzing the conjugation of atypical ubiquitin chains to the phosphatase SHP-1 and reducing the association of SHP-1 with the tyrosine kinase Lck. These findings indicate that targeted ubiquitination regulates the strength of the TCR signal and differentiation toward the TH2 lineage.
Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Células Th2/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Autoimunidade , Diferenciação Celular , Humanos , Inflamação/genética , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células Th2/enzimologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
SHARPIN forms a linear-ubiquitin-chain-assembly complex that promotes signaling via the transcription factor NF-κB. SHARPIN deficiency leads to progressive multi-organ inflammation and immune system malfunction, but how SHARPIN regulates T cell responses is unclear. Here we found that SHARPIN deficiency resulted in a substantial reduction in the number of and defective function of regulatory T cells (Treg cells). Transfer of SHARPIN-sufficient Treg cells into SHARPIN-deficient mice considerably alleviated their systemic inflammation. SHARPIN-deficient T cells displayed enhanced proximal signaling via the T cell antigen receptor (TCR) without an effect on the activation of NF-κB. SHARPIN conjugated with Lys63 (K63)-linked ubiquitin chains, which led to inhibition of the association of TCRζ with the signaling kinase Zap70; this affected the generation of Treg cells. Our study therefore identifies a role for SHARPIN in TCR signaling whereby it maintains immunological homeostasis and tolerance by regulating Treg cells.
Assuntos
Proteínas de Transporte/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteínas de Transporte/genética , Colite/imunologia , Citocinas/imunologia , Feminino , Citometria de Fluxo , Humanos , Tolerância Imunológica/imunologia , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/imunologia , Transdução de Sinais , Ubiquitinação , Proteína-Tirosina Quinase ZAP-70/imunologiaRESUMO
Group 2 innate lymphoid cells (ILC2s) are a specialized subset of lymphoid effector cells that are critically involved in allergic responses; however, the mechanisms of their regulation remain unclear. We report that conditional deletion of the E3 ubiquitin ligase VHL in innate lymphoid progenitors minimally affected early-stage bone marrow ILC2s but caused a selective and intrinsic decrease in mature ILC2 numbers in peripheral non-lymphoid tissues, resulting in reduced type 2 immune responses. VHL deficiency caused the accumulation of hypoxia-inducible factor 1α (HIF1α) and attenuated interleukin-33 (IL-33) receptor ST2 expression, which was rectified by HIF1α ablation or inhibition. HIF1α-driven expression of the glycolytic enzyme pyruvate kinase M2 downmodulated ST2 expression via epigenetic modification and inhibited IL-33-induced ILC2 development. Our study indicates that the VHL-HIF-glycolysis axis is essential for the late-stage maturation and function of ILC2s via targeting IL-33-ST2 pathway.
Assuntos
Glicólise , Linfócitos/fisiologia , Receptores de Interleucina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Diferenciação Celular , Epigenômica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/farmacologia , Camundongos , Transdução de SinaisRESUMO
Follicular helper T cells (T(FH) cells) are responsible for effective B cell-mediated immunity, and Bcl-6 is a central factor for the differentiation of T(FH) cells. However, the molecular mechanisms that regulate the induction of T(FH) cells remain unclear. Here we found that the E3 ubiquitin ligase Itch was essential for the differentiation of T(FH) cells, germinal center responses and immunoglobulin G (IgG) responses to acute viral infection. Itch acted intrinsically in CD4(+) T cells at early stages of T(FH) cell development. Itch seemed to act upstream of Bcl-6 expression, as Bcl-6 expression was substantially impaired in Itch(-/-) cells, and the differentiation of Itch(-/-) T cells into T(FH) cells was restored by enforced expression of Bcl-6. Itch associated with the transcription factor Foxo1 and promoted its ubiquitination and degradation. The defective T(FH) differentiation of Itch(-/-) T cells was rectified by deletion of Foxo1. Thus, our results indicate that Itch acts as an essential positive regulator in the differentiation of T(FH) cells.
Assuntos
Diferenciação Celular , Linfócitos T Auxiliares-Indutores/citologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/fisiologia , Centro Germinativo/imunologia , Interleucina-2/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Células Th2/imunologiaRESUMO
To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.
RESUMO
Foxp3(+) regulatory T (Treg) cells play a critical role in immune homeostasis; however, the mechanisms to maintain their function remain unclear. Here, we report that the E3 ubiquitin ligase VHL is essential for Treg cell function. Mice with Foxp3-restricted VHL deletion displayed massive inflammation associated with excessive Treg cell interferon-γ (IFN-γ) production. VHL-deficient Treg cells failed to prevent colitis induction, but converted into Th1-like effector T cells. VHL intrinsically orchestrated such conversion under both steady and inflammatory conditions followed by Foxp3 downregulation, which was reversed by IFN-γ deficiency. Augmented hypoxia-inducible factor 1α (HIF-1α)-induced glycolytic reprogramming was required for IFN-γ production. Furthermore, HIF-1α bound directly to the Ifng promoter. HIF-1α knockdown or knockout could reverse the increased IFN-γ by VHL-deficient Treg cells and restore their suppressive function in vivo. These findings indicate that regulation of HIF-1α pathway by VHL is crucial to maintain the stability and suppressive function of Foxp3(+) T cells.
Assuntos
Colite/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Células Cultivadas , Reprogramação Celular/genética , Regulação para Baixo/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Tolerância Imunológica , Inflamação/genética , Interferon gama/genética , Interferon gama/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genéticaRESUMO
Classical genetic approaches to examine the requirements of genes for T cell differentiation during infection are time consuming. Here we developed a pooled approach to screen 30-100+ genes individually in separate antigen-specific T cells during infection using short hairpin RNAs in a microRNA context (shRNAmir). Independent screens using T cell receptor (TCR)-transgenic CD4(+) and CD8(+) T cells responding to lymphocytic choriomeningitis virus (LCMV) identified multiple genes that regulated development of follicular helper (Tfh) and T helper 1 (Th1) cells, and short-lived effector and memory precursor cytotoxic T lymphocytes (CTLs). Both screens revealed roles for the positive transcription elongation factor (P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting expression of Cyclin T1, or its catalytic partner Cdk9, impaired development of Th1 cells and protective short-lived effector CTL and enhanced Tfh cell and memory precursor CTL formation in vivo. This pooled shRNA screening approach should have utility in numerous immunological studies.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Interferência de RNA/imunologia , Animais , Diferenciação Celular/genética , Ciclina T/biossíntese , Ciclina T/genética , Quinase 9 Dependente de Ciclina/biossíntese , Quinase 9 Dependente de Ciclina/genética , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo , RNA Interferente Pequeno , Receptores de Antígenos de Linfócitos T/genética , Proteínas com Domínio T/genética , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Fatores de Transcrição/genética , Transdução Genética/métodosRESUMO
The complex stripes and patterns of insects play key roles in behavior and ecology. However, the fine-scale regulation mechanisms underlying pigment formation and morphological divergence remain largely unelucidated. Here we demonstrated that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in spot pattern formation of Bombyx mori. Moreover, our knockout experiments showed that IDGF is suggested to impact the expression levels of the ecdysone inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further control the melanin metabolism. Furthermore, the untargeted metabolomics analyses revealed that BmIDGF significantly affected critical metabolites involved in phenylalanine, beta-alanine, purine, and tyrosine metabolism pathways. Our findings highlighted not only the universal function of IDGF to the maintenance of normal cuticle structure but also an underexplored space in the gene function affecting melanin formation. Therefore, this study furthers our understanding of insect pigment metabolism and melanin pattern polymorphisms.
Assuntos
Bombyx/fisiologia , Proteínas de Insetos/metabolismo , Melaninas/metabolismo , Pigmentação/fisiologia , Animais , Bombyx/anatomia & histologia , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Insetos/genética , Larva/genética , Larva/fisiologia , Melaninas/biossíntese , Melaninas/genética , Metabolômica/métodos , Mutação , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di-C-glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two C-glycosyltransferases (CGTs), i.e., CGTa for C-glucosylation of the 2-hydroxyflavanone aglycone and CGTb for C-arabinosylation of the mono-C-glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including Scutellaria baicalensis, Glycyrrhiza uralensis, Oryza sativa ssp. japonica, and Zea mays, and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.
Assuntos
Vias Biossintéticas , Glicosídeos/biossíntese , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Catálise , Clonagem Molecular , Ativação Enzimática , Flavonoides/biossíntese , Glicosídeos/química , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Relação Estrutura-AtividadeRESUMO
Six pairs of enantiomeric phthalide dimers (1-6) were isolated from the rhizomes of Ligusticum chuanxiong. Their structures and absolute configurations were elucidated by NMR spectroscopy, X-ray diffraction analyses, and electronic circular dichroism calculations. Compounds (+)-1 and (-)-1 are new phthalide dimers, featuring two classes of monomeric units (a phthalide and an unusual 2,3-seco-phthalide) with an uncommon linkage (3,6'/8,3'a). Compounds (+)-2 and (-)-3 are also novel phthalide dimers that had not been reported previously. Although (-)-2 and (+)-3 have been successfully isolated in previous studies, their absolute configurations were not unambiguously determined. As for compound 4, it was reported as a racemate in one study, and one of its enantiomers was identified in a subsequent study. Herein, all enantiomeric phthalide dimers were successfully separated, and their absolute configurations were determined. The inhibitory effects of all isolates against lipopolysaccharide-induced nitric oxide production were tested using RAW264.7 cells. The results show that compounds (+)-2, (-)-2, (+)-3, (-)-3, (+)-4, (-)-4, (+)-5, (+)-6, and (-)-6 have inhibitory activities, with compound (+)-5 being the most active (IC50 value of 4.3 ± 1.3 µM).
Assuntos
Benzofuranos , Ligusticum , Anti-Inflamatórios/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Ligusticum/química , Estrutura Molecular , Rizoma/químicaRESUMO
The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.
Assuntos
Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Modelos Animais de Doenças , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacosRESUMO
BACKGROUND: Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE: We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS: Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS: Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS: Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Assuntos
Plasticidade Celular/imunologia , Enzima Desubiquitinante CYLD/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Imunidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Inflamação/imunologia , Interleucina-4/imunologia , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Nippostrongylus/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Regulação para Cima/imunologiaRESUMO
Lung cancer continues to be the world's leading cause of cancer death and the treatment of non-small cell lung cancer (NSCLC) has attracted much attention. The tubers of Bletilla striata are regarded as "an excellent medicine for lung diseases" and as the first choice to treat several lung diseases. In this study, seventeen phenanthrene derivatives, including two new compounds (1 and 2), were isolated from the tubers of B. striata. Most compounds showed cytotoxicity against A549 cells. An EdU proliferation assay, a cell cycle assay, a wound healing assay, a transwell migration assay, a flow cytometry assay, and a western blot assay were performed to further investigate the effect of compound 1 on A549 cells. The results showed that compound 1 inhibited cell proliferation and migration and promoted cell apoptosis in A549 cells. The mechanisms might correlate with the regulation of the Akt, MEK/ERK, and Bcl-2/Bax signaling pathways. These results suggested that the phenanthrenes of B. striata might be important and effective substances in the treatment of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Orchidaceae , Fenantrenos , Células A549 , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/farmacologiaRESUMO
Macrolactins (MLNs) are a class of important antimacular degeneration and antitumor agents. Malonylated/succinylated MLNs are even more important due to their efficacy in overcoming multi-drug-resistant bacteria. However, which enzyme catalyzes this reaction remains enigmatic. Herein, we deciphered a ß-lactamase homologue BmmI to be responsible for this step. BmmI could specifically attach C3-C5 alkyl acid thioesters onto 7-OH of MLN A and also exhibits substrate promiscuity toward acyl acceptors with different scaffolds. The crystal structure of BmmI covalently linked to the succinyl group and systematic mutagenesis highlighted the role of oxyanion holelike geometry in the recognition of carboxyl-terminated acyl donors. The engineering of this geometry expanded its substrate scope, with the R166A/G/Q variants recognizing up to C12 alkyl acid thioester. The structure of BmmI with acyl acceptor MLN A revealed the importance of Arg292 in the recognition of macrolide substrates. Moreover, the mechanism of the BmmI-catalyzed acyltransfer reaction was established, unmasking the deft role of Lys76 in governing acyl donors as well as catalysis. Our studies uncover the delicate mechanism underlying the substrate selectivity of acyltransferases, which would guide rational enzyme engineering for drug development.
Assuntos
Bacillus/enzimologia , Macrolídeos/metabolismo , beta-Lactamases/metabolismo , Cristalografia por Raios X , Macrolídeos/química , Modelos Moleculares , Estrutura Molecular , beta-Lactamases/genéticaRESUMO
A highly efficient di-C-glycosyltransferase GgCGT was discovered from the medicinal plant Glycyrrhiza glabra. GgCGT catalyzes a two-step di-C-glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di-C-glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono-C-glycosylation. GgCGT is the first di-C-glycosyltransferase with a crystal structure, and the first C-glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize C-glycosides with medicinal potential.
Assuntos
Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glycyrrhiza/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Glicosilação , Glicosiltransferases/genética , Glycyrrhiza/genética , Ligantes , Modelos Moleculares , Floretina/química , Floretina/metabolismo , Especificidade por Substrato , Transcriptoma , Uridina Difosfato Galactose/química , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo , Uridina Difosfato Xilose/química , Uridina Difosfato Xilose/metabolismoRESUMO
Transforming growth factor-beta (TGF-beta) signaling in naive T cells induces expression of the transcription factor Foxp3, a 'master' regulator of regulatory T cells (T(reg) cells). However, the molecular mechanisms leading to Foxp3 induction remain unclear. Here we show that Itch-/- T cells were resistant to TGF-beta treatment and had less Foxp3 expression. The E3 ubiquitin ligase Itch associated with and promoted conjugation of ubiquitin to the transcription factor TIEG1. Itch cooperated with TIEG1 to induce Foxp3 expression, which was reversed by TIEG1 deficiency. Functionally, 'TGF-beta-converted' T(reg) cells generated from TIEG1-deficient mice were unable to suppress airway inflammation in vivo. These results suggest TIEG and Itch contribute to a ubiquitin-dependent nonproteolytic pathway that regulates inducible Foxp3 expression and the control of allergic responses.
Assuntos
Fatores de Transcrição de Resposta de Crescimento Precoce/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Inflamação/imunologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas Repressoras/fisiologia , Sistema Respiratório/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Hipersensibilidade/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/genética , Transdução de Sinais/imunologia , Células Th2/imunologia , Transfecção , Ubiquitina-Proteína Ligases/genéticaRESUMO
P53-binding protein 1 (53BP1) plays critical roles in DNA double strand break (DSB) repair by promoting non-homologous end joining (NHEJ), and loss of 53BP1 abolishes PARPi sensitivity in BRCA1-deficient cells by restoring homologous recombination (HR). 53BP1 is one of the proteins initially recruited to sites of DSBs via recognition of H4K20me2 through the Tudor-UDR domain and H2AK15ub through the UDR motif. Although extensive studies have been conducted, it remains unclear how the post-translational modification of 53BP1 affects DSB repair pathway choice. Here, we identified 53BP1 as an acetylated protein and determined that acetylation of 53BP1 inhibit NHEJ and promote HR by negatively regulating 53BP1 recruitment to DSBs. Mechanistically, CBP-mediated acetylation of K1626/1628 in the UDR motif disrupted the interaction between 53BP1 and nucleosomes, subsequently blocking the recruitment of 53BP1 and its downstream factors PTIP and RIF1 to DSBs. Hyperacetylation of 53BP1, similar to depletion of 53BP1, restored PARPi resistance in BRCA1-deficient cells. Interestingly, 53BP1 acetylation was tightly regulated by HDAC2 to maintain balance between the HR and NHEJ pathways. Together, our results demonstrate that the acetylation status of 53BP1 plays a key role in its recruitment to DSBs and reveal how specific 53BP1 modification modulates the choice of DNA repair pathway.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sequência de Aminoácidos , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Domínio Tudor , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genéticaRESUMO
Tagging the cell surface receptor with ubiquitin is believed to provide a signal for the endocytic pathway. E3 ubiquitin ligases such as Cbl-b and Itch have been implicated in T cell activation and tolerance induction. However, the underlying mechanisms remain unclear. We describe that in mice deficient in the E3 ubiquitin ligases Cbl-b and Itch, T cell activation was augmented, accompanied by spontaneous autoimmunity. The double-mutant T cells exhibited increased phosphorylation of the T cell receptor-zeta (TCR-zeta) chain, whereas the endocytosis and stability of the TCR complex were not affected. TCR-zeta was polyubiquitinated via a K33-linkage, which affected its phosphorylation and association with the zeta chain-associated protein kinase Zap-70. The juxtamembrane K54 residue in TCR-zeta was identified to be a primary ubiquitin conjugation site, whose mutation increased its phosphorylation and association of TCR-zeta and Zap-70. Thus, the present study reveals unconventional K33-linked polyubiquitination in nonproteolytic regulation of cell-surface-receptor-mediated signal transduction.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Autoimunidade/genética , Endocitose/imunologia , Humanos , Células Jurkat , Ativação Linfocitária/genética , Lisina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Ubiquitinação/genética , Proteína-Tirosina Quinase ZAP-70/metabolismoRESUMO
Itch or itchy E3 ubiquitin ligase was initially discovered by genetic studies on the mouse coat color changes, and its deletion results in an itchy phenotype with constant skin scratching and multi-organ inflammation. It is a member of the homologous to E6-associated protein C-terminus (HECT)-type family of E3 ligases, with the protein-interacting WW-domains for the recruitment of substrate and the HECT domain for the transfer of ubiquitin to the substrate. Since its discovery, numerous studies have demonstrated that Itch is involved in the control of many aspects of immune responses including T-cell activation and tolerance and T-helper cell differentiation. Itch is also implicated in other biological contexts such as tumorigenesis, development, and stress responses. Many signaling pathways are regulated by Itch-promoted ubiquitylation of diverse target proteins. Itch is also involved in human diseases. Here, we discuss the major progress in understanding the biological significance of Itch-promoted protein ubiquitylation in the immune and other systems and in Itch-mediated regulation of signal transduction.