Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Issues Mol Biol ; 46(1): 67-80, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275666

RESUMO

Tumor-induced lymphangiogenesis is strongly associated with the formation of tumor metastasis. Therefore, the regulation of lymphangiogenesis offers a promising target in cancer therapy. Arsenic trioxide (ATO) is highly effective in the treatment of patients with acute promyelocytic leukemia (APL). As ATO mediates anti-angiogenic effects on endothelial and tumor cells, we aimed to explore the impact of ATO on lymphangiogenesis in human lymphatic endothelial cells (LEC). The BrdU assay and flow cytometry analysis were used to evaluate the influence of ATO on the proliferation and cell cycle distribution of LECs. The lymphatic suppression effects of ATO were investigated in vitro using the lymphatic tube formation assay. The effects of ATO on apoptosis, mitochondrial membrane potential and endothelial cell receptors were investigated by Western blotting, ELISA, flow cytometry and qRT-PCR. The treatment of LECs with ATO attenuated cell proliferation, blocked tube formation and induced subG0/G1 arrest in LECs, thus suggesting enhanced apoptosis. Although subG0/G1 arrest was accompanied by the upregulation of p21 and p53, ATO treatment did not lead to visible cell cycle arrest in LECs. In addition, ATO caused apoptosis via the release of cytochrome c from mitochondria, activating caspases 3, 8 and 9; downregulating the anti-apoptotic proteins survivin, XIAP and cIAP-2; and upregulating the pro-apoptotic protein Fas. Furthermore, we observed that ATO inhibited the VEGF-induced proliferation of LECs, indicating that pro-survival VEGF/VEGFR signaling was affected by ATO treatment. Finally, we found that ATO inhibited the expression of the important endothelial cell receptors VEGFR-2, VEGFR-3, Tie-2 and Lyve-1. In conclusion, we demonstrate that ATO inhibits lymphangiogenesis by activating apoptotic pathways and inhibiting important endothelial cell receptors, which suggests that this drug should be further evaluated in the treatment of tumor-associated lymphangiogenesis.

2.
J Biol Chem ; 295(43): 14686-14697, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32826315

RESUMO

The biogenesis of mitochondria requires the import of hundreds of precursor proteins. These proteins are transported post-translationally with the help of chaperones, meaning that the overproduction of mitochondrial proteins or the limited availability of chaperones can lead to the accumulation of cytosolic precursor proteins. This imposes a severe challenge to cytosolic proteostasis and triggers a specific transcription program called the mitoprotein-induced stress response, which activates the proteasome system. This coincides with the repression of mitochondrial proteins, including many proteins of the intermembrane space. In contrast, herein we report that the so-far-uncharacterized intermembrane space protein Mix23 is considerably up-regulated when mitochondrial import is perturbed. Mix23 is evolutionarily conserved and a homolog of the human protein CCDC58. We found that, like the subunits of the proteasome, Mix23 is under control of the transcription factor Rpn4. It is imported into mitochondria by the mitochondrial disulfide relay. Mix23 is critical for the efficient import of proteins into the mitochondrial matrix, particularly if the function of the translocase of the inner membrane 23 is compromised such as in temperature-sensitive mutants of Tim17. Our observations identify Mix23 as a novel regulator or stabilizer of the mitochondrial protein import machinery that is specifically up-regulated upon mitoprotein-induced stress conditions.


Assuntos
Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteostase , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Regulação para Cima
3.
BMC Biol ; 16(1): 63, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929505

RESUMO

Tandem fluorescent protein timers are elegant tools to determine proteolytic stabilities of cytosolic proteins with high spatial and temporal resolution. In a new study published in BMC Biology, Kowalski et al. fused timers to precursors of proteins of the mitochondrial intermembrane space and found that they are under surveillance of the ubiquitin-proteasome system. Ubiquitination at lysine residues of these precursors directly inhibits their translocation into the intermembrane space and targets them for proteasomal degradation.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Citosol , Mitocôndrias , Transporte Proteico
5.
Nat Cell Biol ; 21(4): 442-451, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886345

RESUMO

The cytosolic accumulation of mitochondrial precursors is hazardous to cellular fitness and is associated with a number of diseases. However, it is not observed under physiological conditions. Individual mechanisms that allow cells to avoid cytosolic accumulation of mitochondrial precursors have recently been discovered, but their interplay and regulation remain elusive. Here, we show that cells rapidly launch a global transcriptional programme to restore cellular proteostasis after induction of a 'clogger' protein that reduces the number of available mitochondrial import sites. Cells upregulate the protein folding and proteolytic systems in the cytosol and downregulate both the cytosolic translation machinery and many mitochondrial metabolic enzymes, presumably to relieve the workload of the overstrained mitochondrial import system. We show that this transcriptional remodelling is a combination of a 'wideband' core response regulated by the transcription factors Hsf1 and Rpn4 and a unique mitoprotein-induced downregulation of the oxidative phosphorylation components, mediated by an inactivation of the HAP complex.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica , Citosol/enzimologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo
6.
Nat Cell Biol ; 21(6): 793-794, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036940

RESUMO

In the version of this article originally published, parts of Figure 5 were misaligned because of a shift during production. In a, one data point was outside of the graph border. In b, axes lines were not connected, and graph lines did not reach the data points. In c and d, the axes lines were not connected. In e and g, the axes lines were not connected, and error bars and columns were not aligned. Shown below are the original and corrected versions of Figure 5. The errors have been corrected in the PDF and HTML versions of the paper.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa