Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 110: 129882, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996937

RESUMO

We present new small-molecular probes targeting the human PD-L1 protein. The molecules were designed by incorporating a newly discovered N-methylmorpholine substituent into a known biphenyl-based structure. Four prototype derivatives of 4-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine-7-carbonitrile (STD4), comprising a morpholine substituent fused with a biphenyl core at different orientations were first verified for their potential binding to PD-L1 using the molecular docking method. A more favorable 7-phenyl derivative of STD4 was then equipped with an amide bond, pyridine, and either a tris(hydroxymethyl)aminomethane or serinol tail leading to two final molecules. Among them, compound 1c showed activity in three bioassays, i.e., the homogenous time-resolved fluorescence (HTRF) assay, immune checkpoint blockade (ICB) assay, and T-cell activation (TCA) assay. Our work shows that morpholine can substitute for dioxane and becomes a promising component in PD-L1-targeting molecules. This finding unlocks new avenues for optimizing PD-L1-targeting compounds, presenting exciting prospects for future developments in this field.

2.
ACS Med Chem Lett ; 15(1): 36-44, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229762

RESUMO

Although heavily studied, the subject of anti-PD-L1 small-molecule inhibitors is still elusive. Here we present a systematic overview of the principles behind successful anti-PD-L1 small-molecule inhibitor design on the example of the m-terphenyl scaffold, with a particular focus on the neglected influence of the solubilizer tag on the overall affinity toward PD-L1. The inhibitor developed according to the proposed guidelines was characterized through its potency in blocking PD-1/PD-L1 complex formation in homogeneous time-resolved fluorescence and cell-based assays. The affinity is also explained based on the crystal structure of the inhibitor itself and its costructure with PD-L1 as well as a molecular modeling study. Our results structuralize the knowledge related to the strong pharmacophore feature of the m-terphenyl scaffold preferential geometry and the more complex role of the solubilizer tag in PD-L1 homodimer stabilization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa