Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 457(7229): 569-72, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19177126

RESUMO

The distribution of valence electrons in metals usually follows the symmetry of the underlying ionic lattice. Modulations of this distribution often occur when those electrons are not stable with respect to a new electronic order, such as spin or charge density waves. Electron density waves have been observed in many families of superconductors, and are often considered to be essential for superconductivity to exist. Recent measurements seem to show that the properties of the iron pnictides are in good agreement with band structure calculations that do not include additional ordering, implying no relation between density waves and superconductivity in these materials. Here we report that the electronic structure of Ba(1-x)K(x)Fe(2)As(2) is in sharp disagreement with those band structure calculations, and instead reveals a reconstruction characterized by a (pi, pi) wavevector. This electronic order coexists with superconductivity and persists up to room temperature (300 K).

2.
Phys Rev Lett ; 105(14): 147201, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230862

RESUMO

The single-layered half-doped manganite La(0.5)Sr(1.5)MnO4 (LSMO), was studied by means of the angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and resistivity measurements. STM revealed a smooth reconstruction-free surface; the density of states, extracted from photoemission and tunneling spectroscopy, is in agreement with transport measurements. The derived from ARPES Fermi surface (FS) nesting properties correspond to the known pattern of the charge-orbital ordering (COO), which implies that FS instability is related to the propensity to form a COO state in LSMO.

3.
Phys Rev Lett ; 105(6): 067002, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20867999

RESUMO

We have studied the electronic structure of the nonmagnetic LiFeAs (T(c)∼18 K) superconductor using angle-resolved photoemission spectroscopy. We find a notable absence of the Fermi surface nesting, strong renormalization of the conduction bands by a factor of 3, high density of states at the Fermi level caused by a van Hove singularity, and no evidence for either a static or a fluctuating order except superconductivity with in-plane isotropic energy gaps. Our observations suggest that these electronic properties capture the majority of ingredients necessary for the superconductivity in iron pnictides.

4.
Phys Rev Lett ; 104(18): 187001, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482200

RESUMO

We report superconducting (SC) properties of stoichiometric LiFeAs (T(c)=17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rocking curves indicate better ordering than in chemically doped 122 compounds. The London penetration depth lambda(ab)(0)=210+/-20 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. The temperature dependence of lambda(ab) is best described by a single isotropic SC gap Delta(0)=3.0+/-0.2 meV, which agrees with the ARPES value of Delta(0)(ARPES)=3.1+/-0.3 meV and corresponds to the ratio 2Delta/k(B)T(c)=4.1+/-0.3, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor.

5.
Phys Rev Lett ; 99(4): 046403, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678381

RESUMO

We report an angular resolved photoemission study of NaxCoO2 with x approximately 0.73 where it is found that the renormalization of the quasiparticle (QP) dispersion changes dramatically upon a rotation from GammaM to GammaK. The comparison of the experimental data to the calculated band structure reveals that the quasiparticle renormalization is most pronounced along the GammaK direction, while it is significantly weaker along the GammaM direction. We discuss the observed anisotropy in terms of multiorbital effects and point out the relevance of magnetic correlations for the band structure of NaxCoO2 with x approximately 0.75.

6.
Sci Rep ; 5: 10392, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25997611

RESUMO

In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

7.
Sci Rep ; 4: 5168, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24893841

RESUMO

We present an ARPES study of the surface states of Ru2Sn3, a new type of a strong 3D topological insulator (TI). In contrast to currently known 3D TIs, which display two-dimensional Dirac cones with linear isotropic dispersions crossing through one point in the surface Brillouin Zone (SBZ), the surface states on Ru2Sn3 are highly anisotropic, displaying an almost flat dispersion along certain high-symmetry directions. This results in quasi-one dimensional (1D) Dirac electronic states throughout the SBZ that we argue are inherited from features in the bulk electronic structure of Ru2Sn3 where the bulk conduction bands are highly anisotropic. Unlike previous experimentally characterized TIs, the topological surface states of Ru2Sn3 are the result of a d-p band inversion rather than an s-p band inversion. The observed surface states are the topological equivalent to a single 2D Dirac cone at the surface Brillouin zone.

8.
Phys Rev Lett ; 102(16): 166402, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19518731

RESUMO

Using angle-resolved photoemission spectroscopy, we report on the direct observation of the energy gap in 2H-NbSe2 caused by the charge-density waves (CDW). The gap opens in the regions of the momentum space connected by the CDW vectors, which implies a nesting mechanism of CDW formation. In remarkable analogy with the pseudogap in cuprates, the detected energy gap also exists in the normal state (T>T0) where it breaks the Fermi surface into "arcs," it is nonmonotonic as a function of temperature with a local minimum at the CDW transition temperature (T0), and it forestalls the superconducting gap by excluding the nested portions of the Fermi surface from participating in superconductivity.

9.
Phys Rev Lett ; 102(4): 046401, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257445

RESUMO

Measurements of the low-energy electronic structure in Gd2PdSi3 and Tb2PdSi3 by means of angle-resolved photoelectron spectroscopy reveal a Fermi surface consisting of an electron barrel at the Gamma point surrounded by spindle-shaped electron pockets originating from the same band. The calculated momentum-dependent RKKY coupling strength is peaked at the 1/2GammaK wave vector, which coincides with the propagation vector of the low-temperature in-plane magnetic order observed by neutron diffraction, thereby demonstrating the decisive role of the Fermi surface geometry in explaining the complex magnetic ground state of ternary rare earth silicides.

10.
Phys Rev Lett ; 102(16): 167001, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19518744

RESUMO

We investigate the low energy electronic structure of Ba1-xKxFe2As2 (x=0; 0.3, T_{c}=32 K) single crystals by angle-resolved photoemission spectroscopy with a focus on the renormalization of the dispersion. A kink feature is detected at E approximately 25 meV for the doped compound which vanishes at T=200 K but stays virtually constant when T_{c} is crossed. Our experimental findings rule out the magnetic resonance mode as the origin of the kink and render conventional electron-phonon coupling unlikely. They put stringent restrictions on the dominant source of the electronic interaction channel.

11.
Phys Rev Lett ; 100(23): 236402, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643525

RESUMO

We present a calculation of the Hall coefficient in 2H-TaSe(2) and 2H-Cu(0.2)NbS(2) based on their electronic structure extracted from angle-resolved photoemission spectra. The well-known semiclassical approach, based on the solution of the Boltzmann equation, yields the correct value for the normal-state Hall coefficient. Entering the charge density wave state results in the opening of the pseudogap and redistribution of the spectral weight. Accounting for this allows us to reproduce the temperature dependence of the Hall coefficient, including the prominent sign change, with no adjustable parameters.

12.
Phys Rev Lett ; 100(19): 196402, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18518466

RESUMO

Using angle-resolved photoemission spectroscopy we demonstrate that a normal-state pseudogap exists above T(N-IC) in one of the most studied two-dimensional charge-density wave (CDW) dichalcogenides 2H-TaSe(2). The initial formation of the incommensurate CDW is confirmed as being driven by a conventional nesting instability, which is marked by a pseudogap. The magnitude, character, and anisotropy of the 2D-CDW pseudogap bear considerable resemblance to those seen in superconducting cuprates.

13.
Phys Rev Lett ; 99(23): 237002, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18233401

RESUMO

Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

14.
Phys Rev Lett ; 97(1): 017002, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16907398

RESUMO

Applying the Kramers-Kronig consistent procedure, developed earlier, we investigate in detail the formation of the quasiparticle spectrum along the nodal direction of high-Tc cuprates. The heavily discussed "70 meV kink" on the renormalized dispersion exhibits a strong temperature and doping dependence when purified from structural effects such as bilayer splitting, diffraction replicas, etc. This dependence is well understood in terms of fermionic and bosonic constituents of the self-energy. The latter follows the evolution of the spin-fluctuation spectrum, emerging below some doping dependent temperature and sharpening below Tc, and is mainly responsible for the formation of the kink in question.

15.
Phys Rev Lett ; 96(3): 037003, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16486757

RESUMO

The Cu substitution by Zn and Ni impurities and its influence on the mass renormalization effects in angle-resolved photoelectron spectra (ARPES) of Bi2Sr2CaCu2O8-delta is addressed. We show that the nonmagnetic Zn atoms have a much stronger effect in both the nodal and antinodal parts of the Brillouin zone than magnetic Ni. The observed changes are consistent with the behavior of the spin resonance mode as seen by inelastic neutron scattering in YBCO. This strongly suggests that the "peak-dip-hump" and the kink in ARPES on the one side and neutron resonance on the other are closely related features.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa