Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 77(10): 3065-3075, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696237

RESUMO

The elimination of spore-forming bacteria is not guaranteed by current pasteurisation processes and is a challenging problem for the dairy industry. Given that Bacillus cereus sensu lato (B. cereus group) is an important foodborne pathogen and spoiler in the dairy industry, this study aimed at evaluating the prevalence and characteristics of B. cereus group in raw and pasteurised milk samples collected in Victoria, Australia. Isolated B. cereus group were tested for antimicrobial susceptibility, biofilm formation and virulence properties. Genetic diversity was assessed using ERIC-PCR. Proteomic profiling using MALDI-TOF MS and chemical profiling using Fourier-transform infrared (FTIR) spectroscopy were also applied for clustering of the isolates. Results showed 42.3% of milk samples contained B. cereus group, with a higher contamination level for pasteurised milk. Virulence studies identified genes nheA, nheB, hblA and nheC in most isolates and cyk gene in 46% of all isolates. Antimicrobial susceptibility testing showed a high prevalence of resistance towards ampicillin, ceftriaxone and penicillin. The biofilm-forming capacity of our isolates showed that most (53.7%) had the ability to form a biofilm. Genetic profiling using ERIC-PCR placed most B. cereus group isolates from pasteurised milk in the same cluster, indicating that they probably originated from a similar source. Raw milk isolates showed greater diversity indicating various sources. FTIR spectroscopy showed high agreement with genetic profiling. In contrast, low agreement between proteomic (MALDI-TOF MS) and genetic typing was observed. The present study showed that the FTIR spectroscopy could be adopted as a rapid tool for the typing of B. cereus group. Overall, the virulence and antimicrobial resistance characteristics, together with the ability of isolates to produce biofilm, indicate the importance of B. cereus group in the Australian dairy industry.


Assuntos
Bacillus , Leite , Animais , Austrália , Bacillus cereus/genética , Enterotoxinas , Microbiologia de Alimentos , Prevalência , Proteômica
2.
BMC Microbiol ; 14: 55, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24602289

RESUMO

BACKGROUND: Environmental screening programs are used to find new enzymes that may be utilized in large-scale industrial processes. Among microbial sources of new enzymes, the rationale for screening fungal endophytes as a potential source of such enzymes relates to the hypothesised mutualistic relationship between the endophyte and its host plant. There is a need for new microbial amylases that are active at low temperature and alkaline conditions as these would find industrial applications as detergents. RESULTS: An α-amylase produced by Preussia minima, isolated from the Australian native plant, Eremophilia longifolia, was purified to homogeneity through fractional acetone precipitation and Sephadex G-200 gel filtration, followed by DEAE-Sepharose ion exchange chromatography. The purified α-amylase showed a molecular mass of 70 kDa which was confirmed by zymography. Temperature and pH optima were 25°C and pH 9, respectively. The enzyme was activated and stabilized mainly by the metal ions manganese and calcium. Enzyme activity was also studied using different carbon and nitrogen sources. It was observed that enzyme activity was highest (138 U/mg) with starch as the carbon source and L-asparagine as the nitrogen source. Bioreactor studies showed that enzyme activity was comparable to that obtained in shaker cultures, which encourages scale-up fermentation for enzyme production. Following in-gel digestion of the purified protein by trypsin, a 9-mer peptide was sequenced and analysed by LC-ESI-MS/MS. The partial amino acid sequence of the purified enzyme presented similarity to α-amylase from Magnaporthe oryzae. CONCLUSIONS: The findings of the present study indicate that the purified α-amylase exhibits a number of promising properties that make it a strong candidate for application in the detergent industry. To our knowledge, this is the first amylase isolated from a Preussia minima strain of endophytic origin.


Assuntos
Amilases/biossíntese , Amilases/metabolismo , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Amilases/química , Amilases/isolamento & purificação , Cálcio/metabolismo , Fracionamento Químico , Cromatografia em Gel , Cromatografia por Troca Iônica , Cromatografia Líquida , Endófitos/enzimologia , Endófitos/metabolismo , Ativadores de Enzimas , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Manganês/metabolismo , Espectrometria de Massas , Peso Molecular , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
3.
World J Microbiol Biotechnol ; 30(6): 1755-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24419660

RESUMO

Endophytes are recognised as potential sources of novel secondary metabolites, including enzymes and drugs, with applications in medicine, agriculture and industry. There is a growing need for new enzymes, including proteases, for use in industry that can function under a variety of conditions. In this study, three fungal endophytes (Alternaria alternata, Phoma herbarum and an unclassified fungus), were isolated from the Australian native plant, Eremophilia longifolia, and assessed for production of proteases. The lyophilised growth media obtained after fungal fermentation were analysed for protease production using enzyme activity assays. Protease production was optimised by assessing the effects of temperature, pH, carbon source and nitrogen source on activity. A. alternata showed the greatest protease activity in a wide range of pH (3-9). The broadest activity between 9 and 50 °C was observed at pH 7, suggesting a neutral protease. Overall, the optimum conditions were 37 °C and pH 7 with a maximum specific activity value of 69.86 BAEE units/mg. The characteristics demonstrated by this fungal endophyte showed that it is a potential source of an enzyme with particular application in the dairy industry. However, further studies of the tolerance to higher temperatures and pH will indicate whether the enzyme is suitable to such applications.


Assuntos
Alternaria/enzimologia , Endófitos/enzimologia , Eremophila (Planta)/microbiologia , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Alternaria/química , Alternaria/genética , Alternaria/isolamento & purificação , Austrália , Meios de Cultura/química , Meios de Cultura/metabolismo , Endófitos/química , Endófitos/genética , Endófitos/isolamento & purificação , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética
4.
World J Microbiol Biotechnol ; 29(2): 335-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054705

RESUMO

Endophytes are microorganisms that live within plant tissues that are potential sources of novel bioactive compounds, including enzymes. We have identified endophytes of the Australian native plant Eremophilia longifolia which were screened for the production of industrially useful enzymes. Seventeen fungal endophytes were isolated from the leaves of E. longifolia and enzyme production was investigated within a range of pH (3.5, 5.5, 7 and 9) and temperatures (9, 25, 37 and 50 °C). Amylase was the most common enzyme encountered with numerous isolates showing production throughout the temperature and pH ranges. Protease production was also seen over the conditions tested but was more dominant at lower pH and temperature. Activity was not observed for other enzymes including ligninase, xylanase and cellobiohydrolase. Enzymes from isolates of Preussia minima, Alternaria sp. and an unclassified fungus, which showed highest activity in screening assays, were investigated further. Enzyme production was verified by zymography and the amylase activity of P. minima was found to be significantly greater than that of Aspergillus oryzae particularly in alkaline conditions and low temperature which are desirable properties for the detergent industry. This work shows that enzymes with potential use in industry can be readily identified in fungal endophytes.


Assuntos
Endófitos/enzimologia , Endófitos/isolamento & purificação , Eremophila (Planta)/microbiologia , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/isolamento & purificação , Austrália , Endófitos/classificação , Endófitos/genética , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/classificação , Fungos/genética , Microbiologia Industrial , Cinética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/microbiologia
5.
Pharmaceutics ; 15(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839966

RESUMO

Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.

6.
Microorganisms ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37317250

RESUMO

Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.

7.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760755

RESUMO

The threat to public health resulting from the emergence of antimicrobial resistance (AMR) is ever rising. One of the major bacterial pathogens at the forefront of this problem is methicillin-resistant Staphylococcus aureus, or MRSA, for which there is a great need to find alternative treatments. One of the most promising alternatives is endophytic fungi, which were shown to produce a vast array of bioactive compounds, including many novel antibacterial compounds. In this study, two endophytic Alternaria sp., EL 24 and EL 35, were identified from the leaves of Eremophila longifolia. Ethyl acetate (EtOAc) extracts of their culture filtrates were found to inhibit both methicillin-sensitive S. aureus ATCC 25923 and MRSA strains M173525 and M180920. The activity of each extract was shown to be greatly affected by the growth medium, with considerable reductions in minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) observed when tested in tryptic soy broth with glucose (TSBG) compared with Mueller-Hinton broth (MHB). Both extracts displayed significant (p ≤ 0.05) antibiofilm activity against all three S. aureus strains, the greatest of which was that of EL 35, which reduced biofilm formation by M180920 by 72%, while that of EL 24 resulted in a 57% reduction against ATCC 25923. Both extracts also disrupted established biofilms, of which the most effective was EL 35, which reduced the M180920 biofilm by 64%, while EL 24 also performed best against M180920, reducing biofilm by 54%. Gas chromatography-mass spectrometry (GC-MS) analysis of the EL 24 EtOAc extract revealed five known compounds. This study highlights the promise of endophytic fungi from Australian plants as a potential source of substances effective against important bacterial pathogens. Further understanding of the responsible compounds and their mechanisms could lead to the development of treatments effective against MRSA, as well as novel biofilm-resistant biomedical materials, contributing towards reducing the burden of AMR.

8.
Microorganisms ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36296265

RESUMO

Over the last few decades, many of the existing drugs used to treat infectious diseases have become increasingly ineffective due to the global emergence of antimicrobial resistance (AMR). As such, there is a constant demand to find new, effective compounds that could help to alleviate some of this pressure. Endophytic fungi have captured the attention of many researchers in this field, as they have displayed a vast ability to produce novel bioactive compounds, many of which possess wide-ranging antimicrobial activities. However, while highly promising, research in this area is still in its infancy. Endophytes inhabit the healthy tissues of plants asymptomatically, resulting in a mutualistic symbiosis in which the endophytes produce a plethora of bioactive compounds that support the fitness of the host plant. These compounds display great chemical diversity, representing structural groups, such as aliphatic compounds, alkaloids, peptides, phenolics, polyketides and terpenoids. In this review, the significant antimicrobial potential of endophytic fungi is detailed, highlighting their ability to produce novel and diverse antimicrobial compounds active against human, plant and marine pathogens. In doing so, it also highlights the significant contributions that endophytic fungi can make in our battle against AMR, thus providing the motivation to increase efforts in the search for new and effective antimicrobial drugs.

9.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590360

RESUMO

Interest in endophytes as natural sources for new medicines was inspired by the discovery of paclitaxel-producing endophytic fungi. This study investigated the anti-cancer activity of extracts of endophytes isolated from two Australian plants, Eremophila longifolia (EL) and Eremophila maculata (EM). Endophytes were isolated from surface-sterilised leaf tissue, grown as pure cultures and identified by sequencing of Internal Transcribed Spacer (ITS) regions of the ribosomal DNA. To determine cytotoxicity, two leukaemic (MOLT-4, T-cell leukaemia; PreB-697, Pre-B leukaemia), a lung cancer cell line (A549) and a normal human fibroblast cell line were treated with endophyte extracts to assess cytotoxicity in relation to alternariol monomethyl ether (AME) and alternariol (AOH). Endophyte extracts that showed cell cytotoxicity were analysed by UV-HPLC to determine the metabolites. Pure AME and AOH, three extracts form Alternaria sp. (EM-6, EM-7 and EM-9) and one from Preussia minima (EL-14) were cytotoxic to the cancer cell lines. All cytotoxic endophytes contained AME and AOH, the most cytotoxic endophyte EM-6 also contained two unique peaks. These data indicate that these four endophyte extracts may have anti-cancer properties due to the presence of AME and AOH; however, the unique compounds found in the EM-6 extract may be exclusively cytotoxic and warrant further investigation.


Assuntos
Antineoplásicos/farmacologia , Endófitos/química , Eremophila (Planta)/microbiologia , Fungos/química , Lactonas/farmacologia , Antineoplásicos/metabolismo , Austrália , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Humanos , Lactonas/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa