Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chempluschem ; : e202400375, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073319

RESUMO

А chemical modification of cellulose diacetate by phthalate and nitrate was performed to increase solubility in organic solvents and change the electrical properties. The role of substituents on the conductivity, permittivity, and polarizability of cellulose films is revealed. It has been shown that highly porous micro particles can be obtained from cellulose derivatives by a simple and technological freeze-drying method. The resulting micro sized aerogels have a predominantly spherical morphology and amorphous structure. Suspensions of porous particles of nitro- and phthalylated cellulose derivatives in silicone oil have an increased dielectric permittivity compared to cellulose diacetate particles. Produced particles are novel promising material with tunable electrical properties for advanced applications in composites, including for electrorheological fluids.

2.
Biomimetics (Basel) ; 8(8)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132504

RESUMO

High-strength composite hydrogels based on collagen or chitosan-genipin were obtained via mixing using highly porous polylactide (PLA) microparticles with diameters of 50-75 µm and porosity values of over 98%. The elastic modulus of hydrogels depended on the filler concentration. The modulus increased from 80 kPa to 400-600 kPa at a concentration of porous particles of 12-15 wt.% and up to 1.8 MPa at a filling of 20-25 wt.% for collagen hydrogels. The elastic modulus of the chitosan-genipin hydrogel increases from 75 kPa to 900 kPa at a fraction of particles of 20 wt.%. These elastic modulus values cover a range of strength properties from connective tissue to cartilage tissue. It is important to note that the increase in strength in this case is accompanied by a decrease in the density of the material, that is, an increase in porosity. PLA particles were loaded with C-phycocyanin and showed an advanced release profile up to 48 h. Thus, composite hydrogels mimic the structure, biomechanics and release of biomolecules in the tissues of a living organism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa