Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cryobiology ; 114: 104844, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38171448

RESUMO

Cryoablation (CA) of solid tumors is highly effective at reducing tumor burden and eliminating small, early stage tumors. However, complete ablation is difficult to achieve and cancer recurrence is a significant barrier to treatment of larger tumors compared to resection. In this study, we explored the relationship between temperature, ice growth, and cell death using a novel in vitro model of clinical CA with the Visual-ICE (Boston Scientific) system, a clinically approved and widely utilized device. We found that increasing the duration of freezing from 1 to 2 min increased ice radius from 3.44 ± 0.13 mm to 5.29 ± 0.16 mm, and decreased the minimum temperature achieved from -22.8 ± 1.3 °C to -45.5 ± 7.9 °C. Furthermore, an additional minute of freezing increased the amount of cell death within a 5 mm radius from 42.5 ± 8.9% to 84.8 ± 1.1%. Freezing at 100% intensity leads to faster temperature drops and a higher level of cell death in the TRAMP-C2 mouse prostate cancer cell line, while lower intensities are useful for slow freezing, but result in less cell death. The width of transition zone between live and dead cells decreased by 0.4 ± 0.2 mm, increasing from one to two cycles of freeze/thaw cycles at 100% intensity. HMGB-1 levels significantly increased with 3 cycles of freeze/thaw compared to the standard 2 cycles. Overall, a longer freezing duration, higher freezing intensity, and more freeze thaw cycles led to higher levels of cancer cell death and smaller transition zones. These results have the potential to inform future preclinical research and to improve therapeutic combinations with CA.


Assuntos
Criocirurgia , Masculino , Animais , Camundongos , Criocirurgia/métodos , Criopreservação/métodos , Congelamento , Fígado , Morte Celular
2.
Glycobiology ; 31(3): 188-199, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681173

RESUMO

Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.


Assuntos
Antitrombina III/química , Fator 2 de Crescimento de Fibroblastos/química , Heparitina Sulfato/química , Análise em Microsséries , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Humanos
3.
J Biol Chem ; 294(12): 4412-4424, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670588

RESUMO

Human interleukin-12 (hIL-12) is a heparin-binding cytokine whose activity was previously shown to be enhanced by heparin and other sulfated glycosaminoglycans. The current study investigated the mechanisms by which heparin increases hIL-12 activity. Using multiple human cell types, including natural killer cells, an IL-12 indicator cell line, and primary peripheral blood mononuclear and T cells, along with bioactivity, flow cytometry, and isothermal titration calorimetry assays, we found that heparin-dependent modulation of hIL-12 function correlates with several of heparin's biophysical characteristics, including chain length, sulfation level, and concentration. Specifically, only heparin molecules longer than eight saccharide units enhanced hIL-12 activity. Furthermore, heparin molecules with three sulfate groups per disaccharide unit outperformed heparin molecules with one or two sulfate groups per disaccharide unit in terms of enhanced hIL-12 binding and activity. Heparin also significantly reduced the EC50 value of hIL-12 by up to 11.8-fold, depending on the responding cell type. Cytokine-profiling analyses revealed that heparin affected the level, but not the type, of cytokines produced by lymphocytes in response to hIL-12. Interestingly, although murine IL-12 also binds heparin, heparin did not enhance its activity. Using the gathered data, we propose a model of hIL-12 stabilization in which heparin serves as a co-receptor enhancing the interaction between heterodimeric hIL-12 and its receptor subunits. The results of this study provide a foundation for further investigation of heparin's interactions with IL-12 family cytokines and for the use of heparin as an immunomodulatory agent.


Assuntos
Heparina/farmacologia , Interleucina-12/farmacologia , Animais , Fenômenos Biofísicos , Calorimetria , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Células HEK293 , Heparina/química , Heparitina Sulfato/metabolismo , Humanos , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Interleucina-2/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
4.
Anal Chem ; 91(23): 15032-15039, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694368

RESUMO

Detecting the effects of low oxygen on cell function is often dependent on monitoring the expression of a number of hypoxia markers. The time dependence of the appearance and stability of these markers varies between cell lines. Assessing cellular marker dynamics is also critical to determining how quickly cells respond to transient changes in oxygen levels that occurs with cycling hypoxia. We fabricated a manifold designed to use flow-encoding to produce sequential changes in gas mixtures delivered to a permeable-bottom 96-well plate. We show how this manifold and plate design can be used to expose cells to either static or cycling hypoxic conditions for eight different time periods thereby facilitating the study of the time-response of cells to altered oxygen environments. Using this device, we monitored the time-dependence of molecular changes in human PANC-1 pancreatic carcinoma and Caco-2 colon adenocarcinoma cells exposed to increasing periods of static or cycling hypoxia. Using immunohistochemistry, both cell lines show detectable levels of the marker protein hypoxia-inducible factor-1α (HIF-1α) after 3 h of exposure to static hypoxia. Cycling hypoxia increased the expression level of HIF-1α compared to static hypoxia. Both static and cycling hypoxia also increased glucose uptake and aldehyde dehydrogenase activity. This new device offers a facile screening approach to determine the kinetics of cellular alterations under varying oxygen conditions.


Assuntos
Hipóxia Celular , Oxigênio/metabolismo , Aldeído Desidrogenase/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Glucose/farmacocinética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/farmacologia , Neoplasias Pancreáticas/patologia , Fatores de Tempo
5.
Biochem Biophys Res Commun ; 518(2): 191-196, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420170

RESUMO

Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1). Two-dimensional NMR data suggest that the single point mutations at position-136 (R136G, R136L, R136Q, R136K, and R136E) did not perturb the backbone folding of hFGF1. Results of the differential scanning calorimetry experiments show that of all the designed R136 mutations only the charge reversal mutation, R136E, significantly increases (ΔTm = 7 °C) the thermal stability of the protein. Limited trypsin and thrombin digestion results reveal that the R136E mutation drastically increases the resistance of hFGF1 to the action of the serine proteases. Isothermal titration calorimetry data show that the R136E mutation markedly decreases the heparin binding affinity of hFGF1. Interestingly, despite lower heparin binding affinity, the cell proliferation activity of the R136E variant is more than double of that exhibited by either the wild type or the other R136 variants. The R136E variant due to its increased thermal stability, resistance to proteases, and enhanced cell proliferation activity are expected to provide valuable clues for the development of hFGF1- based therapeutics for the management of chronic diabetic wounds.


Assuntos
Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/metabolismo , Trombina/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Mutação Puntual , Conformação Proteica
6.
Breast Cancer Res ; 20(1): 126, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348199

RESUMO

BACKGROUND: Although metastasis is ultimately responsible for about 90% of breast cancer mortality, the vast majority of breast-cancer-related deaths are due to progressive recurrences from non-metastatic disease. Current adjuvant therapies are unable to prevent progressive recurrences for a significant fraction of patients with breast cancer. Autologous tumor cell vaccines (ATCVs) are a safe and potentially useful strategy to prevent breast cancer recurrence, in a personalized and patient-specific manner, following standard-of-care tumor resection. Given the high intra-patient and inter-patient heterogeneity in breast cancer, it is important to understand which factors influence the immunogenicity of breast tumor cells in order to maximize ATCV effectiveness. METHODS: The relative immunogenicity of two murine breast carcinomas, 4T1 and EMT6, were compared in a prophylactic vaccination-tumor challenge model. Differences in cell surface expression of antigen-presentation-related and costimulatory molecules were compared along with immunosuppressive cytokine production. CRISPR/Cas9 technology was used to modulate tumor-derived cytokine secretion. The impacts of cytokine deletion on splenomegaly, myeloid-derived suppressor cell (MDSC) accumulation and ATCV immunogenicity were assessed. RESULTS: Mice vaccinated with an EMT6 vaccine exhibited significantly greater protective immunity than mice vaccinated with a 4T1 vaccine. Hybrid vaccination studies revealed that the 4T1 vaccination induced both local and systemic immune impairments. Although there were significant differences between EMT6 and 4T1 in the expression of costimulatory molecules, major disparities in the secretion of immunosuppressive cytokines likely accounts for differences in immunogenicity between the cell lines. Ablation of one cytokine in particular, granulocyte-colony stimulating factor (G-CSF), reversed MDSC accumulation and splenomegaly in the 4T1 model. Furthermore, G-CSF inhibition enhanced the immunogenicity of a 4T1-based vaccine to the extent that all vaccinated mice developed complete protective immunity. CONCLUSIONS: Breast cancer cells that express high levels of G-CSF have the potential to diminish or abrogate the efficacy of breast cancer ATCVs. Fortunately, this study demonstrates that genetic ablation of immunosuppressive cytokines, such as G-CSF, can enhance the immunogenicity of breast cancer cell-based vaccines. Strategies that combine inhibition of immunosuppressive factors with immune stimulatory co-formulations already under development may help ATCVs reach their full potential.


Assuntos
Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Imunogenicidade da Vacina , Recidiva Local de Neoplasia/prevenção & controle , Animais , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral/imunologia , Linhagem Celular Tumoral/efeitos da radiação , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Deleção de Genes , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/imunologia , Resultado do Tratamento
7.
Arch Biochem Biophys ; 654: 115-125, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031837

RESUMO

Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth and tissue repair. In this study, we investigate the effect(s) of understanding the role of a conserved proline (P135), located in the heparin binding pocket, on the structure, stability, heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 with a positively charged lysine (P135K) resulted in partial destabilization of the protein; however, the overall structural integrity of the protein was maintained upon substitution of proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding pocket at position 135 (P135E) increased hFGF1's affinity for heparin by 3-fold, while the P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced the heparin binding affinity by ∼3-fold. Furthermore, the cell proliferation activity was increased when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and P135K (P135K/R136E). Overall, the results of this study suggest that while heparin is useful for stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF receptor.


Assuntos
Proliferação de Células/fisiologia , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/fisiologia , Prolina/fisiologia , Fator 1 de Crescimento de Fibroblastos/genética , Heparina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
8.
Mar Drugs ; 14(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187416

RESUMO

Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg) ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.


Assuntos
Quitosana/química , Quitosana/imunologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Materiais Biocompatíveis/química , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Técnicas de Transferência de Genes , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Engenharia Tecidual/métodos , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Viscosidade
9.
Cancer Immunol Immunother ; 64(6): 689-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754122

RESUMO

Bladder cancer is a highly recurrent disease in need of novel, durable treatment strategies. This study assessed the ability of an intravesical immunotherapy composed of a coformulation of the biopolymer chitosan with interleukin-12 (CS/IL-12) to induce systemic adaptive tumor-specific immunity. Intravesical CS/IL-12 immunotherapy was used to treat established orthotopic MB49 and MBT-2 bladder tumors. All mice receiving intravesical CS/IL-12 immunotherapy experienced high cure rates of orthotopic disease. To investigate the durability and extent of the resultant adaptive immune response, cured mice were rechallenged both locally (intravesically) and distally. Cured mice rejected 100 % of intravesical tumor rechallenges and 50-100 % of distant subcutaneous rechallenges in a tumor-specific manner. The ability of splenocytes from cured mice to lyse targets in a tumor-specific manner was assessed in vitro, revealing that lytic activity of splenocytes from cured mice was robust and tumor specific. Protective immunity was durable, lasting for at least 18 months after immunotherapy. In an advanced bladder cancer model, intravesical CS/IL-12 immunotherapy controlled simultaneous orthotopic and subcutaneous tumors in 70 % of treated mice. Intravesical CS/IL-12 immunotherapy creates a robust and durable tumor-specific adaptive immune response against bladder cancer. The specificity, durability, and potential of this therapy to treat both superficial and advanced disease are deserving of consideration for clinical translation.


Assuntos
Quitosana/administração & dosagem , Interleucina-12/administração & dosagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Administração Intravesical , Animais , Linhagem Celular Tumoral , Quitosana/imunologia , Relação Dose-Resposta Imunológica , Feminino , Imunoterapia/métodos , Interleucina-12/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Distribuição Aleatória
10.
Protein Expr Purif ; 102: 76-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123642

RESUMO

Interleukin-12 is a heterodimeric, pro-inflammatory cytokine that is a key driver of cell-mediated immunity. Clinical interest in IL-12 is significant due to its potent anti-tumor activity and efficacy in controlling certain infectious diseases such as Leishmaniasis and Listeria infection. For clinical applications, the ease of production and purification of IL-12 and the associated cost continues to be a consideration. In this context, we report a simple and effective heparin-affinity based purification of recombinant human IL-12 (hIL-12) from the serum-free supernatants of stable IL-12-transduced HEK293 cells. Fractionation of culture supernatants on heparin Sepharose columns revealed that hIL-12 elutes as a single peak in 500 mM NaCl. Coomassie staining and Western blot analysis showed that hIL-12 eluted in 500 mM NaCl is homogeneous. Purity of hIL-12 was ascertained by RP-HPLC and ESI-MS analysis, and found to be ∼98%. Western blot analysis, using monoclonal antibodies, demonstrated that the crucial inter-subunit disulfide bond linking the p35 and p40 subunits is intact in the purified hIL-12. Results of far UV circular dichroism, steady-state tryptophan fluorescence, and differential scanning calorimetry experiments suggest that purified hIL-12 is in its stable native conformation. Enzyme linked immunosorbent assays (ELISAs) and bioactivity studies demonstrate that hIL-12 is obtained in high yields (0.31±0.05 mg/mL of the culture medium) and is also fully bioactive. Isothermal titration calorimetry data show that IL-12 exhibits a moderate binding affinity (Kd(app)=69±1 µM) to heparin. The purification method described in this study is expected to provide greater impetus for research on the role of heparin in the regulation of the function of IL-12. In addition, the results of this study provide an avenue to obtain high amounts of IL-12 required for structural studies which are aimed at the development of novel IL-12-based therapeutics.


Assuntos
Células HEK293/metabolismo , Interleucina-12/genética , Interleucina-12/isolamento & purificação , Sequência de Aminoácidos , Sítios de Ligação , Western Blotting , Cromatografia de Afinidade , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Heparina/metabolismo , Humanos , Interleucina-12/química , Interleucina-12/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Regulação para Cima
11.
Front Immunol ; 15: 1385484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803496

RESUMO

Breast cancer poses one of the largest threats to women's health. Treatment continues to improve for all the subtypes of breast cancer, but some subtypes, such as triple negative breast cancer, still present a significant treatment challenge. Additionally, metastasis and local recurrence are two prevalent problems in breast cancer treatment. A newer type of therapy, immunotherapy, may offer alternatives to traditional treatments for difficult-to-treat subtypes. Immunotherapy engages the host's immune system to eradicate disease, with the potential to induce long-lasting, durable responses. However, systemic immunotherapy is only approved in a limited number of indications, and it benefits only a minority of patients. Furthermore, immune related toxicities following systemic administration of potent immunomodulators limit dosing and, consequently, efficacy. To address these safety considerations and improve treatment efficacy, interest in local delivery at the site of the tumor has increased. Numerous intratumorally delivered immunotherapeutics have been and are being explored clinically and preclinically, including monoclonal antibodies, cellular therapies, viruses, nucleic acids, cytokines, innate immune agonists, and bacteria. This review summarizes the current and past intratumoral immunotherapy clinical landscape in breast cancer as well as current progress that has been made in preclinical studies, with a focus on delivery parameters and considerations.


Assuntos
Neoplasias da Mama , Imunoterapia , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Imunoterapia/métodos , Animais
12.
ACS Biomater Sci Eng ; 10(2): 905-920, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240491

RESUMO

Localized delivery of immunotherapeutics within a tumor has the potential to reduce systemic toxicities and improve treatment outcomes in cancer patients. Unfortunately, local retention of therapeutics following intratumoral injection is problematic and is insufficiently considered. Dense tumor architectures and high interstitial pressures rapidly exclude injections of saline and other low-viscosity solutions. Hydrogel-based delivery systems, on the other hand, can resist shear forces that cause tumor leakage and thus stand to improve the local retention of coformulated therapeutics. The goal of the present work was to construct a novel, injectable hydrogel that could be tuned for localized immunotherapy delivery. A chitosan-based hydrogel, called XCSgel, was developed and subsequently characterized. Nuclear magnetic resonance studies were performed to describe the chemical properties of the new entity, while cryo-scanning electron microscopy allowed for visualization of the hydrogel's cross-linked network. Rheology experiments demonstrated that XCSgel was shear-thinning and self-healing. Biocompatibility studies, both in vitro and in vivo, showed that XCSgel was nontoxic and induced transient mild-to-moderate inflammation. Release studies revealed that coformulated immunotherapeutics were released over days to weeks in a charge-dependent manner. Overall, XCSgel displayed several clinically important features, including injectability, biocompatibility, and imageability. Furthermore, the properties of XCSgel could also be controlled to tune the release of coformulated immunotherapeutics.


Assuntos
Quitosana , Neoplasias , Humanos , Hidrogéis/química , Injeções
13.
Mol Pharm ; 10(3): 813-30, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379366

RESUMO

Many life-threatening diseases are disseminated through biological fluids, such as blood, lymph, and cerebrospinal fluid. The migration of tumor cells through the vascular circulation is a mandatory step in metastasis, which is responsible for ∼90% of cancer-associated mortality. Circulating pathogenic bacteria, viruses, or blood clots lead to other serious conditions including bacteremia, sepsis, viremia, infarction, and stroke. Therefore, technologies capable of detecting circulating tumor cells (CTCs), circulating bacterial cells (CBCs), circulating endothelial cells (CECs), circulating blood clots, cancer biomarkers such as microparticles and exosomes, which contain important microRNA signatures, and other abnormal features such as malaria parasites in biological fluids may facilitate early diagnosis and treatment of metastatic cancers, infections, and adverse cardiovascular events. Unfortunately, even in a disease setting, circulating abnormal cells are rare events that are easily obscured by the overwhelming background material in whole blood. Existing detection methods mostly rely on ex vivo analyses of limited volumes (a few milliliters) of blood samples. These small volumes limit the probability of detecting CTCs, CECs, CBCs and other rare phenomena. In vivo detection platforms capable of continuously monitoring the entire blood volume may substantially increase the probability of detecting circulating abnormal cells and, in particular, increase the opportunity to identify exceedingly rare and potentially dangerous subsets of these cells, such as circulating cancer stem cells (CCSCs). In addition, in vivo detection technologies capable of destroying and/or capturing circulating abnormal cells may inhibit disease progression. This review focuses on novel therapeutic and diagnostic (theranostic) platforms integrating in vivo real-time early diagnosis and nano-bubble based targeted therapy of CTCs, CECs, CBCs and other abnormal objects in circulation. This critical review particularly focuses on nanotechnology-based theranostic (nanotheranostic) approaches, especially in vivo photoacoustic (PA) and photothermal (PT) nanotheranostic platforms. We emphasize an urgent need for in vivo platforms composed of multifunctional contrast nanoagents, which utilize diverse modalities to realize a breakthrough for early detection and treatment of harmful diseases disseminated through the circulation.


Assuntos
Imagem Molecular/métodos , Nanotecnologia/métodos , Células Neoplásicas Circulantes/patologia , Humanos , Técnicas Fotoacústicas
14.
ACS Appl Mater Interfaces ; 15(23): 27457-27470, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272781

RESUMO

Macrophages play a pivotal role in wound healing and tissue regeneration, as they are rapidly recruited to the site of injury or implanted foreign material. Depending on their interaction with the material, macrophages can develop different phenotypes, with the M1 pro-inflammatory and M2 pro-regenerative phenotypes being highly involved in tissue regeneration. M2 macrophages mitigate inflammation and promote tissue regeneration and extracellular matrix remodeling. In this study, we engineered a gelatin-heparin-methacrylate (GelMA-HepMA) hydrogel that gradually releases interleukin-4 (IL-4), a cytokine that modulates macrophages to adopt the M2 phenotype. Methacrylation of heparin improved the retention of both heparin and IL-4 within the hydrogel. The GelMA-HepMA hydrogel and IL-4 synergistically downregulated M1 gene expression and upregulated M2 gene expression in macrophages within 48 h of in vitro cell culture. However, the M2-like macrophage phenotype induced by the GelMA-HepMA-IL-4 hydrogel did not necessarily further improve endothelial cell proliferation and migration in vitro.


Assuntos
Heparina , Interleucina-4 , Interleucina-4/farmacologia , Heparina/farmacologia , Heparina/metabolismo , Macrófagos/metabolismo , Fenótipo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
15.
Sci Rep ; 13(1): 1983, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737628

RESUMO

This study was designed to test the hypothesis that in addition to repairing the architectural and cellular cues via regenerative medicine, the delivery of immune cues (immunotherapy) may be needed to enhance regeneration following volumetric muscle loss (VML) injury. We identified IL-10 signaling as a promising immunotherapeutic target. To explore the impact of targeting IL-10 signaling, tibialis anterior (TA) VML injuries were created and then treated in rats using autologous minced muscle (MM). Animals received either recombinant rat IL-10 or phosphate buffered saline (PBS) controls injections at the site of VML repair beginning 7 days post injury (DPI) and continuing every other day (4 injections total) until 14 DPI. At 56 DPI (study endpoint), significant improvements to TA contractile torque (82% of uninjured values & 170% of PBS values), TA mass, and myofiber size in response to IL-10 treatment were detected. Whole transcriptome analysis at 14 DPI revealed activation of IL-10 signaling, muscle hypertrophy, and lymphocytes signaling pathways. Expression of ST2, a regulatory T (Treg) cell receptor, was dramatically increased at the VML repair site in response to IL-10 treatment when compared to PBS controls. The findings suggest that the positive effect of delayed IL-10 delivery might be due to immuno-suppressive Treg cell recruitment.


Assuntos
Doenças Musculares , Regeneração , Ratos , Animais , Interleucina-10/metabolismo , Doenças Musculares/tratamento farmacológico , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Imunidade
16.
Cancers (Basel) ; 15(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190138

RESUMO

Focal ablation technologies are routinely used in the clinical management of inoperable solid tumors but they often result in incomplete ablations leading to high recurrence rates. Adjuvant therapies, capable of safely eliminating residual tumor cells, are therefore of great clinical interest. Interleukin-12 (IL-12) is a potent antitumor cytokine that can be localized intratumorally through coformulation with viscous biopolymers, including chitosan (CS) solutions. The objective of this research was to determine if localized immunotherapy with a CS/IL-12 formulation could prevent tumor recurrence after cryoablation (CA). Tumor recurrence and overall survival rates were assessed. Systemic immunity was evaluated in spontaneously metastatic and bilateral tumor models. Temporal bulk RNA sequencing was performed on tumor and draining lymph node (dLN) samples. In multiple murine tumor models, the addition of CS/IL-12 to CA reduced recurrence rates by 30-55%. Altogether, this cryo-immunotherapy induced complete durable regression of large tumors in 80-100% of treated animals. Additionally, CS/IL-12 prevented lung metastases when delivered as a neoadjuvant to CA. However, CA plus CS/IL-12 had minimal antitumor activity against established, untreated abscopal tumors. Adjuvant anti-PD-1 therapy delayed the growth of abscopal tumors. Transcriptome analyses revealed early immunological changes in the dLN, followed by a significant increase in gene expression associated with immune suppression and regulation. Cryo-immunotherapy with localized CS/IL-12 reduces recurrences and enhances the elimination of large primary tumors. This focal combination therapy also induces significant but limited systemic antitumor immunity.

17.
Biomed Opt Express ; 14(12): 6114-6126, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420330

RESUMO

We used diffuse reflectance spectroscopy to quantify tissue absorption and scattering-based parameters in similarly sized tumors derived from a panel of four isogenic murine breast cancer cell lines (4T1, 4T07, 168FARN, 67NR) that are each capable of accomplishing different steps of the invasion-metastasis cascade. We found lower tissue scattering, increased hemoglobin concentration, and lower vascular oxygenation in indolent 67NR tumors incapable of metastasis compared with aggressive 4T1 tumors capable of metastasis. Supervised learning statistical approaches were able to accurately differentiate between tumor groups and classify tumors according to their ability to accomplish each step of the invasion-metastasis cascade. We investigated whether the inhibition of metastasis-promoting genes in the highly metastatic 4T1 tumors resulted in measurable optical changes that made these tumors similar to the indolent 67NR tumors. These results demonstrate the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology and discriminate between indolent and aggressive tumors.

18.
Front Immunol ; 13: 858904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592324

RESUMO

Despite the remarkable efficacy of currently approved COVID-19 vaccines, there are several opportunities for continued vaccine development against SARS-CoV-2 and future lethal respiratory viruses. In particular, restricted vaccine access and hesitancy have limited immunization rates. In addition, current vaccines are unable to prevent breakthrough infections, leading to prolonged virus circulation. To improve access, a subunit vaccine with enhanced thermostability was designed to eliminate the need for an ultra-cold chain. The exclusion of infectious and genetic materials from this vaccine may also help reduce vaccine hesitancy. In an effort to prevent breakthrough infections, intranasal immunization to induce mucosal immunity was explored. A prototype vaccine comprised of receptor-binding domain (RBD) polypeptides formulated with additional immunoadjuvants in a chitosan (CS) solution induced high levels of RBD-specific antibodies in laboratory mice after 1 or 2 immunizations. Antibody responses were durable with high titers persisting for at least five months following subcutaneous vaccination. Serum anti-RBD antibodies contained both IgG1 and IgG2a isotypes suggesting that the vaccine induced a mixed Th1/Th2 response. RBD vaccination without CS formulation resulted in minimal anti-RBD responses. The addition of CpG oligonucleotides to the CS plus RBD vaccine formulation increased antibody titers more effectively than interleukin-12 (IL-12). Importantly, generated antibodies were cross-reactive against RBD mutants associated with SARS-CoV-2 variants of concern, including alpha, beta and delta variants, and inhibited binding of RBD to its cognate receptor angiotensin converting enzyme 2 (ACE2). With respect to stability, vaccines did not lose activity when stored at either room temperature (21-22°C) or 4°C for at least one month. When delivered intranasally, vaccines induced RBD-specific mucosal IgA antibodies, which may protect against breakthrough infections in the upper respiratory tract. Altogether, data indicate that the designed vaccine platform is versatile, adaptable and capable of overcoming key constraints of current COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , Vacinas de Subunidades Antigênicas
19.
Theranostics ; 12(12): 5351-5363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910801

RESUMO

The accurate analytical characterization of metastatic phenotype at primary tumor diagnosis and its evolution with time are critical for controlling metastatic progression of cancer. Here, we report a label-free optical strategy using Raman spectroscopy and machine learning to identify distinct metastatic phenotypes observed in tumors formed by isogenic murine breast cancer cell lines of progressively increasing metastatic propensities. Methods: We employed the 4T1 isogenic panel of murine breast cancer cells to grow tumors of varying metastatic potential and acquired label-free spectra using a fiber probe-based portable Raman spectroscopy system. We used MCR-ALS and random forests classifiers to identify putative spectral markers and predict metastatic phenotype of tumors based on their optical spectra. We also used tumors derived from 4T1 cells silenced for the expression of TWIST, FOXC2 and CXCR3 genes to assess their metastatic phenotype based on their Raman spectra. Results: The MCR-ALS spectral decomposition showed consistent differences in the contribution of components that resembled collagen and lipids between the non-metastatic 67NR tumors and the metastatic tumors formed by FARN, 4T07, and 4T1 cells. Our Raman spectra-based random forest analysis provided evidence that machine learning models built on spectral data can allow the accurate identification of metastatic phenotype of independent test tumors. By silencing genes critical for metastasis in highly metastatic cell lines, we showed that the random forest classifiers provided predictions consistent with the observed phenotypic switch of the resultant tumors towards lower metastatic potential. Furthermore, the spectral assessment of lipid and collagen content of these tumors was consistent with the observed phenotypic switch. Conclusion: Overall, our findings indicate that Raman spectroscopy may offer a novel strategy to evaluate metastatic risk during primary tumor biopsies in clinical patients.


Assuntos
Segunda Neoplasia Primária , Análise Espectral Raman , Animais , Linhagem Celular Tumoral , Melanoma , Camundongos , Metástase Neoplásica , Fenótipo , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
20.
Clin Cancer Res ; 15(7): 2387-96, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19276249

RESUMO

PURPOSE: IFN-alpha is a pleiotropic cytokine possessing immunomodulatory properties that may improve the efficacy of therapeutic cancer vaccines. The aim of this study was to evaluate the effectiveness and compatibility of combining recombinant IFN-alpha with poxvirus vaccines targeting the human carcinoembryonic antigen (CEA) in murine models of colorectal and pancreatic adenocarcinomas, where CEA is a self-antigen. EXPERIMENTAL DESIGN: The phenotypic and functional effects of IFN-alpha were evaluated in the draining inguinal lymph nodes of tumor-free mice. We studied the effect of the site of IFN-alpha administration (local versus distal) on antigen-specific immune responses to poxvirus vaccination. Mechanistic studies were conducted to assess the efficacy of IFN-alpha and CEA-directed poxvirus vaccines in tumor-bearing CEA transgenic mice. RESULTS: We identified a dose and schedule of IFN-alpha that induced a locoregional expansion of the draining inguinal lymph nodes and improved cellular cytotoxicity (natural killer and CD8(+)) and antigen presentation. Suppression of the vaccinia virus was avoided by administering IFN-alpha distal to the site of vaccination. The combination of IFN-alpha and vaccine inhibited tumor growth, improved survival, and elicited CEA-specific CTL responses in mice with CEA(+) adenocarcinomas. In mice with pancreatic tumors, IFN-alpha slowed tumor growth, induced CTL activity, and increased CD8(+) tumor-infiltrating lymphocytes. CONCLUSIONS: These data suggest that IFN-alpha can be used as a biological response modifier with antigen-directed poxvirus vaccines to yield significant therapeutic antitumor immune responses. This study provides the rationale and mechanistic insights to support a clinical trial of this immunotherapeutic strategy in patients with CEA-expressing carcinomas.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Vírus da Varíola das Aves Domésticas/genética , Interferon-alfa/uso terapêutico , Vaccinia virus/genética , Adenocarcinoma/imunologia , Animais , Vacinas Anticâncer/genética , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Terapia Combinada , DNA Recombinante/análise , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa