Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Biol Rep ; 50(6): 4931-4943, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076706

RESUMO

BACKGROUND: Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression. METHODS AND RESULTS: Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners. CONCLUSION: These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.


Assuntos
Proteômica , Esquizofrenia , Humanos , Proteômica/métodos , Espectrometria de Massas , Encéfalo/metabolismo , NF-kappa B/metabolismo
2.
Appl Microbiol Biotechnol ; 107(18): 5803-5812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462697

RESUMO

In recent years, gut microbiome alterations have been linked with complex underlying mechanisms of neurodegenerative disorders including Alzheimer's disease (AD). The gut microbiota modulates gut brain axis by facilitating development of hypothalamic-pituitary-adrenal axis and synthesis of neuromodulators. The study was designed to unravel the effect of combined consumption of probiotics; Lactobacillus rhamnosus GG (LGG®) and Bifidobacterium BB-12 (BB-12®) (1 × 109 CFU) on AlCl3-induced AD mouse model in comparison with potent acetylcholine esterase inhibitor drug for AD, donepezil. Mice were randomly allocated to six different study groups (n = 8). Behavioral tests were conducted to assess effect of AlCl3 (300 mg/kg) and probiotics treatment on cognition and anxiety through Morris Water Maze (MWM), Novel Object Recognition (NOR), Elevated Plus Maze (EPM), and Y-maze. The results indicated that the combined probiotic treatment significantly (p < 0.0001) reduced anxiety-like behavior post AlCl3 exposure. The AlCl3 + LGG® and BB-12®-treated group showed significantly improved spatial (p < 0.0001) and recognition memory (p < 0.0001) in comparison to AlCl3-treated group. The expression status of inflammatory cytokines (TNF-α and IL-1ß) was also normalized upon treatment with LGG® and BB-12® post AlCl3 exposure. Our findings indicated that the probiotics LGG® and BB-12® have strong potential to overcome neuroinflammatory imbalance, cognitive deficits and anxiety-like behavior, therefore can be considered as a combination therapy for AD through modulation of gut brain axis. KEY POINTS: • Bifidobacterium BB-12 and Lactobacillus rhamnosus GG were fed to AlCl3-induced Alzheimer's disease mice. • This combination of probiotics had remarkable ameliorating effects on anxiety, neuroinflammation and cognitive deficits. • These effects may suggest that combined consumption of these probiotics instigate potential mitigation of AD associated consequences through gut brain axis modulation.


Assuntos
Doença de Alzheimer , Bifidobacterium animalis , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Probióticos/uso terapêutico
3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047807

RESUMO

db/db mice, which lack leptin receptors and exhibit hyperphagia, show disturbances in energy metabolism and are a model of obesity and type 2 diabetes. The geroneuroprotector drug candidate CMS121 has been shown to be effective in animal models of Alzheimer's disease and aging through the modulation of metabolism. Thus, the hypothesis was that CMS121 could protect db/db mice from metabolic defects and thereby reduce liver inflammation and kidney damage. The mice were treated with CMS121 in their diet for 6 months. No changes were observed in food and oxygen consumption, body mass, or locomotor activity compared to control db/db mice, but a 5% reduction in body weight was noted. Improved glucose tolerance and reduced HbA1c and insulin levels were also seen. Blood and liver triglycerides and free fatty acids decreased. Improved metabolism was supported by lower levels of fatty acid metabolites in the urine. Markers of liver inflammation, including NF-κB, IL-18, caspase 3, and C reactive protein, were lowered by the CMS121 treatment. Urine markers of kidney damage were improved, as evidenced by lower urinary levels of NGAL, clusterin, and albumin. Urine metabolomics studies provided further evidence for kidney protection. Mitochondrial protein markers were elevated in db/db mice, but CMS121 restored the renal levels of NDUFB8, UQCRC2, and VDAC. Overall, long-term CMS121 treatment alleviated metabolic imbalances, liver inflammation, and reduced markers of kidney damage. Thus, this study provides promising evidence for the potential therapeutic use of CMS121 in treating metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatite , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Receptores para Leptina/metabolismo , Fígado/metabolismo , Rim/metabolismo , Hepatite/metabolismo , Camundongos Endogâmicos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Leptina/metabolismo
4.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903551

RESUMO

Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmarinus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative disorders is just beginning to be understood. This review summarizes the current data on the mode of action through which carnosic acid exerts its neuroprotective role that may serve to strategize novel therapeutic approaches for these debilitating neurodegenerative disorders.


Assuntos
Fármacos Neuroprotetores , Rosmarinus , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia , Abietanos/farmacologia , Extratos Vegetais/farmacologia
5.
Mol Biol Rep ; 49(6): 5117-5131, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182322

RESUMO

Multiple sclerosis (MS) is a chronic and complex neurodegenerative disease, distinguished by the presence of lesions in the central nervous system (CNS) due to exacerbated immunological responses that inflict oligodendrocytes and the myelin sheath of axons. In recent years, studies have focused on targeted therapeutics for MS that emphasize the role of G protein-coupled receptors (GPCRs), specifically cannabinoids receptors. Clinical studies have suggested the therapeutic potential of cannabinoids derived from Cannabis sativa in relieving pain, tremors and spasticity. Cannabinoids also appear to prevent exaggerated immune responses in CNS due to compromised blood-brain barrier. Both, endocannabinoid system (ECS) modulators and cannabinoid ligands actively promote oligodendrocyte survival by regulating signaling, migration and myelination of nerve cells. The cannabinoid receptors 1 (CB1) and 2 (CB2) of ECS are the main ones in focus for therapeutic intervention of MS. Various CB1/CB2 receptors agonists have been experimentally studied which showed anti-inflammatory properties and are considered to be effective as potential therapeutics for MS. In this review, we focused on the exacerbated immune attack on nerve cells and the role of the cannabinoids and its interaction with the ECS in CNS during MS pathology.


Assuntos
Canabinoides , Esclerose Múltipla , Doenças Neurodegenerativas , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Humanos , Esclerose Múltipla/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de Canabinoides
6.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364024

RESUMO

Glioblastoma multiforme (GBM) is a tumor of glial origin and is the most malignant, aggressive and prevalent type, with the highest mortality rate in adult brain cancer. Surgical resection of the tumor followed by Temozolomide (TMZ) therapy is currently available, but the development of resistance to TMZ is a common limiting factor in effective treatment. The present study investigated the potential interactions of TMZ with several secretory proteins involved in various molecular and cellular processes in GBM. Automated docking studies were performed using AutoDock 4.2, which showed an encouraging binding affinity of TMZ towards all targeted proteins, with the strongest interaction and binding affinity with GDF1 and SLIT1, followed by NPTX1, CREG2 and SERPINI, among the selected proteins. Molecular dynamics (MD) simulations of protein-ligand complexes were performed via CABS-flex V2.0 and the iMOD server to evaluate the root-mean-square fluctuations (RMSFs) and measure protein stability, respectively. The results showed that docked models were more flexible and stable with TMZ, suggesting that it may be able to target putative proteins implicated in gliomagenesis that may impact radioresistance. However, additional in vitro and in vivo investigations can ascertain the potential of the selected proteins to serve as novel targets for TMZ for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia , Proteínas Repressoras/metabolismo
7.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364071

RESUMO

Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aß) aggregation and impaired synaptic transmission, which makes the associated proteins, such as ß-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.


Assuntos
Doença de Alzheimer , Rosmarinus , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Rosmarinus/metabolismo , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/uso terapêutico , Sinapsinas/uso terapêutico , Acetilcolinesterase/metabolismo , Simulação de Dinâmica Molecular
8.
BMC Infect Dis ; 21(1): 228, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639860

RESUMO

BACKGROUND: Family with sequence similarity 26, member F (FAM26F) is an important innate immunity modulator playing a significant role in diverse immune responses, however, the association of FAM26F expression with HBV infection is not yet known. Thus, the current study aims to explore the differential expression of FAM26F in vitro in HepAD38 and HepG2 cell lines upon HBV infection, and in vivo in HBV infected individuals. The effects of antioxidant and calcium inhibitors on the regulation of FAM26F expression were also evaluated. The expression of FAM26F was simultaneously determined with well-established HBV infection markers: IRF3, and IFN-ß. METHODS: The expression of FAM26F and marker genes was analyzed through Real-time qPCR and western blot. RESULTS: Our results indicate that the differential expression of FAM26F followed the same trend as that of IRF3 and IFN-ß. The in vitro study revealed that, in both HBV infected cell lines, FAM26F expression was significantly down-regulated as compared to uninfected control cells. Treatment of cells with N-acetyl-L-cysteine (NAC), EGTA-AM, BAPTA-AM, and Ru360 significantly upregulated the expression of FAM26F in both the cell lines. Moreover, in in vivo study, FAM26F expression was significantly downregulated in all HBV infected groups as compared to controls (p = 0.0007). The expression was higher in the HBV recovered cases, probably due to the decrease in infection and increase in the immunity of these individuals. CONCLUSION: Our study is the first to show the association of FAM26F with HBV infection. It is proposed that FAM26F expression could be an early predictive marker for HBV infection, and thus is worthy of further investigation.


Assuntos
Cálcio/farmacologia , Hepatite B/genética , Glicoproteínas de Membrana/genética , Estresse Oxidativo/fisiologia , Adolescente , Adulto , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Estudos de Casos e Controles , Linhagem Celular , Criança , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/patologia , Vírus da Hepatite B/fisiologia , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Adulto Jovem
9.
Mol Biol Rep ; 47(10): 7861-7870, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33011892

RESUMO

Methylphenidate (MPH), a psychotropic medication is commonly used for children with attention deficit hyperactivity disorder (ADHD). In this study we elucidated the neuroprotective and anti-inflammatory effects of MPH and Rosmarinus officinalis (rosemary) extract, an ancient aromatic herb with several applications in traditional medicine. Briefly, six groups of mice (n = 8 each group), were specified for the study and behavioral analysis was performed to analyze spatial memory followed by histological assessment and gene expression analysis of synaptic (Syn I, II and III) and inflammatory markers (IL-6, TNFα and GFAP) via qRT-PCR, in an AlCl3-induced mouse model for neurotoxicity. The behavioral analysis demonstrated significant cognitive decline, memory defects and altered gene expression in AlCl3-treated group. Rosemary extract significantly decreased the expression of inflammatory and synaptic markers to the similar levels as that of MPH. The present findings suggested the neuroprotective potential of Rosmarinus officinalis extract. However, further characterization of its anti-inflammatory and neuroprotective properties and MPH is required to strategize future treatments for several neurological and neurodegenerative disorders, including Alzheimer's disease.


Assuntos
Cloreto de Alumínio/toxicidade , Cognição/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Metilfenidato/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Rosmarinus/química , Sinapses/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Extratos Vegetais/química , Sinapses/patologia
10.
Drug Chem Toxicol ; 41(4): 399-407, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29742941

RESUMO

The present study investigates the neuroprotective effects of Foeniculum vulgare seeds in a lead (Pb)-induced brain neurotoxicity mice model. The dried seeds extract of Foeniculum vulgare was prepared with different concentrations of organic solvents (ethanol, methanol, n-hexane). The in vitro antioxidant activity of Foeniculum vulgare seed extracts was assessed through DPPH assay and the chemical composition of the extracts was determined by high-resolution 1H NMR spectroscopy. The age-matched male Balb/c mice (divided into 9 groups) were administered with 0.1% Pb and 75% and 100% ethanol extracts of Foeniculum vulgare seeds at a dose of 200 mg/kg/day and 20 mg/kg/day. The maximum antioxidant activity was found for 75% ethanol extract, followed by 100% ethanol extract. Gene expression levels of oxidative stress markers (SOD1 and Prdx6) and the three isoforms of APP (APP common, 770 and 695), in the cortex and hippocampus of the treated and the control groups were measured. Significant increase in APP 770 expression level while a substantial decrease was observed for SOD1, Prdx6 and APP 695 expression in Pb-treated groups. Interestingly, the deranged expression levels were significantly normalized by the treatment with ethanol extracts of Foeniculum vulgare seeds (specifically at dose of 200 mg/kg/day). Furthermore, the Pb-induced morphological deterioration of cortical neurons was significantly improved by the ethanol extracts of Foeniculum vulgare seeds. In conclusion, the present findings highlight the promising therapeutic potential of Foeniculum vulgare to minimize neuronal toxicity by normalizing the expression levels of APP isoforms and oxidative stress markers.


Assuntos
Encéfalo/efeitos dos fármacos , Foeniculum , Chumbo/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Extratos Vegetais/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Foeniculum/química , Sequestradores de Radicais Livres/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Sementes
11.
Int J Neurosci ; 127(9): 805-811, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27734716

RESUMO

Synaptosomal-associated protein 25 kDa (SNAP-25) is one of the key proteins involved in the formation of neural soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes, which are responsible for the calcium-dependent exocytosis of neurotransmitters - a major step in neurotransmission and the key to normal functioning of brain. Several studies have reported abnormalities in its expression and structure and highlighted it as an important player in pathology of various neurological disorders like Alzheimer's disease, schizophrenia, attention deficient hyperactivity disorder, epilepsy and few others. Several studies have also associated its substantial expression disturbances with various polymorphisms and post-translational modifications. The present review examines the crucial implication of SNAP-25 in altered neuronal processes and highlights its substantial association with various neurological disorders.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Encéfalo/patologia , Humanos , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo
12.
Neurol Sci ; 36(10): 1763-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248483

RESUMO

Alzheimer's disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aß) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person's cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aß deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as "type 3 diabetes". Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.


Assuntos
Doença de Alzheimer/fisiopatologia , Diabetes Mellitus/fisiopatologia , Insulina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diabetes Mellitus/tratamento farmacológico , Humanos
13.
Neurochem Res ; 39(1): 208-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24306222

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common form of dementia and cognitive impairment is usually characterized by neuritic amyloid plaques, cerebrovascular amyloidosis and neurofibrillary tangles. In order to find out the pathological protein expression, a quantitative proteome analysis of AD hippocampus, substantia nigra and cortex was performed and the extent of protein expression variation not only in contrast to age-matched controls but also among the understudied regions was analyzed. Expression alterations of 48 proteins were observed in each region along with significant co/contra regulation of malate dehydrogenase, lactate dehydrogenase B chain, aconitate hydratase, protein NipSnap homolog 2, actin cytoplasmic 1, creatine kinase U-type and glyceraldehyde-3-phosphate dehydrogenase. These differentially expressed proteins are mainly involved in energy metabolism, cytoskeleton integration, apoptosis and several other potent cellular/molecular processes. Interaction association network analysis further confirms the close interacting relationship between the co/contra regulated differentially expressed proteins among all the three regions. Elucidation of co/contra regulation of differentially expressed proteins will be helpful to understand disease progression and functional alterations associated with AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Transcriptoma , Idoso , Encéfalo/patologia , Córtex Cerebral/metabolismo , Progressão da Doença , Hipocampo/metabolismo , Humanos , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Substância Negra/metabolismo
14.
Front Genet ; 15: 1271404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299037

RESUMO

Background: In recent years, microRNAs (miRNAs) have emerged as key players in the pathophysiology of multiple diseases including Alzheimer's disease (AD). Messenger RNA (mRNA) targeting for regulation of gene expression by miRNAs has been implicated in the annotation of disease pathophysiology as well as in the explication of their starring role in contemporary therapeutic interventions. One such miRNA is miR-153 which mediates the survival of cortical neurons and inhibits plaque formation. However, the core mRNA targets of miR-153 have not been fully illustrated. Objective: The present study aimed to elucidate the potential involvement of miR-153 in AD pathogenesis and to reveal its downstream targets. Methods: miRanda was used to identify AD-associated targets of miR-153. TargetScan, PicTar, miRmap, and miRDB were further used to validate these targets. STRING 12 was employed to assess the protein-protein interaction network while Gene ontology (GO) analysis was carried out to identify the molecular functions exhibited by these gene targets. Results: In silico analysis using miRanda predicted five important AD-related targets of miR-153, including APP, SORL1, PICALM, USF1, and PSEN1. All five target genes are negatively regulated by miR-153 and are substantially involved in AD pathogenesis. A protein interaction network using STRING 12 uncovered 30 potential interacting partners for SORL1, PICALM, and USF1. GO analysis revealed that miR-153 target genes play a critical role in neuronal survival, differentiation, exon guidance, amyloid precursor protein processing, and synapse formation. Conclusion: These findings unravel the potential role of miR-153 in the pathogenesis of AD and provide the basis for forthcoming experimental studies.

15.
Aging (Albany NY) ; 16(6): 4980-4999, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517358

RESUMO

BACKGROUND: Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS: Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS: The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS: The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Envelhecimento , Butiratos/metabolismo , Butiratos/farmacologia , Dieta Hiperlipídica
16.
Clin Proteomics ; 10(1): 6, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23724895

RESUMO

BACKGROUND: Complex molecular events lead to development and progression of liver cirrhosis to HCC. Differentially expressed nuclear membrane associated proteins are responsible for the functional and structural alteration during the progression from cirrhosis to carcinoma. Although alterations/ post translational modifications in protein expression have been extensively quantified, complementary analysis of nuclear membrane proteome changes have been limited. Deciphering the molecular mechanism that differentiate between normal and disease state may lead to identification of biomarkers for carcinoma. RESULTS: Many proteins displayed differential expression when nuclear membrane proteome of hepatocellular carcinoma (HCC), fibrotic liver, and HepG2 cell line were assessed using 2-DE and ESI-Q-TOF MS/MS. From the down regulated set in HCC, we have identified for the first time a 15 KDa cytochrome b5A (CYB5A), ATP synthase subunit delta (ATPD) and Hemoglobin subunit beta (HBB) with 11, 5 and 22 peptide matches respectively. Furthermore, nitrosylation studies with S-nitrosocysteine followed by immunoblotting with anti SNO-cysteine demonstrated a novel and biologically relevant post translational modification of thiols of CYB5A in HCC specimens only. Immunofluorescence images demonstrated increased protein S-nitrosylation signals in the tumor cells and fibrotic region of HCC tissues. The two other nuclear membrane proteins which were only found to be nitrosylated in case of HCC were up regulated ATP synthase subunit beta (ATPB) and down regulated HBB. The decrease in expression of CYB5A in HCC suggests their possible role in disease progression. Further insight of the functional association of the identified proteins was obtained through KEGG/ REACTOME pathway analysis databases. String 8.3 interaction network shows strong interactions with proteins at high confidence score, which is helpful in characterization of functional abnormalities that may be a causative factor of liver pathology. CONCLUSION: These findings may have broader implications for understanding the mechanism of development of carcinoma. However, large scale studies will be required for further verification of their critical role in development and progression of HCC.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37994914

RESUMO

BACKGROUND: Social hierarchies are important for individual's well-being, professional and domestic growth, harmony of the society, as well as survival and morbidity. Studies have revealed sexual dimorphism in the social abilities; however, data is limited on the sex-specific effects of various drugs used to treat psychiatric disorders and social deficits. OBJECTIVE: The present study aimed at evaluating the sex-dependent effects of Risperidone (antipsychotic that targets D2 dopaminergic, 5HT2A serotonergic, and α-adrenergic receptors), Donepezil (a reversible acetylcholinesterase inhibitor), and Paroxetine (a selective serotonin reuptake inhibitor) on social hierarchy in rats under normal and stressed states. METHODS: 8-12 weeks old male and female Wistar rats were divided into sex-wise 4-4 groups, i.e., 1. control group, 2. Risperidone treated group (3 mg/kg/day), 3. Donepezil treated group (5 mg/kg/day), and Paroxetine treated group (10 mg/kg/day). Rats were treated with these drugs in phase I for 21 days in distilled drinking water, followed by a no (drugs) treatment break of 10 days. After the break phase II started with the administration of drugs (same as in phase I) along with tilt-cage stress for 21 days. Home cage activity assessment was performed once a week during both phases (I & II), while tube dominance and resident intruder tests were performed at the end of each phase. RESULTS: In phase I in both sexes, Risperidone treatment decreased social interaction and motor activity while Paroxetine treatment increased these in both sexes compared to their respective control groups. Social dominance and aggression were reduced after treatment with both of these drugs. In contrast, Donepezil treatment caused an increase in motor activity in females whereas reduced motor activity in males. Furthermore, Donepezil treatment caused reduction in interaction but increased social dominance and aggression were observed in both sexes. In phase II, stress led to an overall decrease in motor activity and social interaction of animals. Treatment with Risperidone, Paroxetine, and Donepezil caused a sex-specific effect on, motor activity, social interaction, and social exploration. CONCLUSION: These results showed that Risperidone has stronger effects on male social behavior whereas Paroxetine and Donepezil differentially affect social abilities in both sexes during normal and stressed situations.

18.
J Neurochem ; 121(6): 954-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22436009

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and cognitive impairment usually characterized by widespread neurodegeneration throughout the association cortex, limbic system and hippocampus. Aberrant protein phosphorylation is a defining pathological hallmark of AD and implicated in the dysregulation of major cellular processes through highly dynamic and complex signaling pathways. Here in, we demonstrate 81 proteins, of 600 spots selected, unambiguously identified as phosphorylated, providing a partial phosphoproteome profile of AD substantia nigra and cortex and respective control brain regions. More importantly, abnormal phosphorylation signal intensity of nine physiologically important proteins observed can profoundly affect cell metabolism, signal transduction, cytoskeleton integration, and synaptic function and accounts for biological and morphological alterations. Our studies employed two-dimensional gel electrophoresis for protein separation, Pro-Q(®) Diamond phosphoprotein staining and electrospray ionization quadrupole time of flight tandem MS for protein identification. NetPhosk 1.0 is used for the confirmation of protein modification status as well known/putative phosphoproteins. A further insight into the links among the identified phosphoproteins and functional roles STRING 8.3, KEGG and REACTOME pathway databases were applied. The present quantitative phosphoproteomic analysis can be supportive in establishing a broad database of potential protein targets of abnormal phosphorylation in AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Fosfoproteínas/análise , Proteoma/análise , Substância Negra/metabolismo , Idoso , Eletroforese em Gel Bidimensional , Humanos , Fosfoproteínas/metabolismo , Fosforilação , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray
19.
Front Pharmacol ; 13: 1058358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618920

RESUMO

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by substantial neuronal damage which manifests in the form of deficits in memory and cognition. In spite of the debilitating nature of Alzheimer's disease (AD), a dearth of treatment strategies calls for the need to develop therapeutic agents that stimulate neurogenesis and alleviate the associated cognitive deficits. The present study investigates the therapeutic potential of two major phytochemicals, rosmarinic acid (RA) and ursolic acid (UA) in an amyloid beta1-42 (Aß1-42)-induced model of AD. UA, a natural pentacyclic triterpenoid and RA, a phenolic ester are major bioactive constituents of Rosmarinus officinalis, which is a medicinal herb belonging to family Lamiaceae and exhibiting significant biological properties including neuroprotection. Donepezil, a second generation cholinesterase inhibitor approved for the treatment of mild, moderate and severe Alzheimer's disease (AD) is used as control. Out of eight groups of male BALB/c mice, stereotaxic surgery was performed on four groups (n = 6 each) to introduce Aß1-42 in the hippocampus followed by treatment with vehicle (phosphate-buffered saline (PBS)), donepezil, UA or RA. The other four groups were given vehicle, donepezil, UA and RA only. Behavior analysis for social interaction was performed which constitutes the social affiliation and the social novelty preference test. Presence of Aß plaques and expression of neurogenesis markers i.e., doublecortin (DCX) and Ki-67 were also assessed. Results revealed the neuroprotective effect of UA and RA observed through substantial reduction in Aß plaques as compared to the Aß1-42- and donepezil-treated groups. The neuronal density was also restored as evident via DCX and Ki-67 immunoreactivity in Aß1-42 + RA and Aß1-42+UA-treated groups in comparison to Aß1-42-treated and Aß1-42+donepezil-treated groups. The social affiliation was reestablished in the Aß1-42 administered groups treated with UA and RA. Molecular docking studies further validated the comparable binding of UA and RA with Ki-67 and DCX to that of donepezil. Our findings suggest that UA and RA are potential neuroprotective compounds that reverses the histological hallmarks of AD and ameliorate impaired social memory and hippocampal neurogenesis.

20.
Front Aging Neurosci ; 14: 970263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158537

RESUMO

Purpose: Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder with many complex pathways feeding into its pathogenesis and progression. Vitamin C, an essential dietary antioxidant, is vital for proper neurological development and maintenance. This meta-analysis and systematic review attempted to define the relationship between vitamin C plasma levels and AD while highlighting the importance and involvement of vitamin C in the pathogenesis of AD. Materials and methods: PRISMA guidelines were used to obtain studies quantifying the plasma levels of vitamin C in AD and control subjects. The literature was searched in the online databases PubMed, Google Scholar, and Web of Science. A total of 12 studies were included (n = 1,100) and analyzed using Comprehensive Meta-Analysis 3.0. Results: The results show that there is a significant decrease in the plasma vitamin C levels of AD patients as compared to healthy controls (pooled SMD with random-effect model: -1.164, with 95%CI: -1.720 to -0.608, Z = -4.102, p = 0.00) with significant heterogeneity (I 2 = 93.218). The sensitivity analysis showed directionally similar results. Egger's regression test (p = 0.11) and visual inspection of the funnel plot showed no publication bias. Conclusion: Based on these studies, it can be deduced that the deficiency of vitamin C is involved in disease progression and supplementation is a plausible preventive and treatment strategy. However, clinical studies are warranted to elucidate its exact mechanistic role in AD pathophysiology and prevention.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa