Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043795

RESUMO

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Assuntos
Cálcio , Canais Iônicos , Túbulos Renais Coletores , Membrana Celular , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Pirazinas/farmacologia , Tiadiazóis/farmacologia , Água/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Animais , Camundongos , Cálcio/metabolismo
2.
Am J Physiol Renal Physiol ; 324(6): F603-F616, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141145

RESUMO

The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.


Assuntos
Hipopotassemia , Deficiência de Potássio , Animais , Camundongos , Adenosina Trifosfatases , Homeostase , Hipopotassemia/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Deficiência de Potássio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
FASEB J ; 36(5): e22275, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349181

RESUMO

The collecting duct is a highly adaptive terminal part of the nephron, which is essential for maintaining systemic homeostasis. Principal and intercalated cells perform different physiological tasks and exhibit distinctive morphology. However, acid-secreting A- and base secreting B-type of intercalated cells cannot be easily separated in functional studies. We used BCECF-sensitive intracellular pH (pHi ) measurements in split-opened collecting ducts followed by immunofluorescent microscopy in WT and intercalated cell-specific ClC-K2-/- mice to demonstrate that ClC-K2 inhibition enables to distinguish signals from A- and B-intercalated cells. We show that ClC-K2 Cl- channel is expressed on the basolateral side of intercalated cells, where it governs Cl- -dependent H+ /HCO3- transport. ClC-K2 blocker, NPPB, caused acidification or alkalization in different subpopulations of intercalated cells in WT but not ClC-K2-/- mice. Immunofluorescent assessment of the same collecting ducts revealed that NPPB increased pHi in AE1-positive A-type and decreased pHi in pendrin-positive B-type of intercalated cells. Induction of metabolic acidosis led to a significantly augmented abundance and H+ secretion in A-type and decreased proton transport in B-type of intercalated cells, whereas metabolic alkalosis caused the opposite changes in intercalated cell function, but did not substantially change their relative abundance. Overall, we show that inhibition of ClC-K2 can be employed to discriminate between A- and B-type of intercalated cells in split-opened collecting duct preparations. We further demonstrate that this method can be used to independently monitor changes in the functional status and abundance of A- and B-type in response to systemic acid/base stimuli.


Assuntos
Acidose , Túbulos Renais Coletores , Acidose/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos , Néfrons/metabolismo , Transportadores de Sulfato/metabolismo
4.
J Biol Chem ; 296: 100347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524393

RESUMO

The renal collecting duct plays a critical role in setting urinary volume and composition, with principal cells transporting Na+ and K+ and intercalated cells mediating Cl- reabsorption. Published evidence implies Angiotensin II (Ang II) is a potent regulator of the collecting duct apical transport systems in response to systemic volume depletion. However, virtually nothing is known about Ang II actions on the basolateral conductance of principal and intercalated cells. Here, we combined macroscopic and single channel patch clamp recordings from freshly isolated mouse collecting ducts with biochemical and fluorescence methods to demonstrate an acute stimulation of the basolateral Cl- conductance and specifically the ClC-K2 Cl- channel by nanomolar Ang II concentrations in intercalated cells. In contrast, Ang II did not exhibit measurable effects on the basolateral conductance and on Kir4.1/5.1 potassium channel activity in principal cells. Although both Ang II receptors AT1 and AT2 are expressed in collecting duct cells, we show that AT1 receptors were essential for stimulatory actions of Ang II on ClC-K2. Moreover, AT1R-/- mice had decreased renal ClC-K2 expression. We further demonstrated that activation of NADPH oxidases is the major signaling pathway downstream of Ang II-AT1R that leads to stimulation of ClC-K2. Treatment of freshly isolated collecting ducts with Ang II led to production of reactive oxygen species on the same timescale as single channel ClC-K2 activation. Overall, we propose that Ang II-dependent regulation of ClC-K2 in intercalated cells is instrumental for stimulation of Cl- reabsorption by the collecting duct, particularly during hypovolemic states.


Assuntos
Angiotensina II/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Canais de Cloreto/metabolismo , Túbulos Renais Coletores/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL
5.
Curr Top Membr ; 89: 75-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210153

RESUMO

Kidneys are central for whole body water and electrolyte balance by first filtering plasma at the glomeruli and then processing the filtrate along the renal nephron until the final urine is produced. Renal nephron epithelial cells mediate transport of water and solutes which is under the control of systemic hormones as well as local mechanical stimuli arising from alterations in fluid flow. TRPV4 is a mechanosensitive Ca2+ channel abundantly expressed in different segments of the renal nephron. The accumulated evidence suggests a critical role for TRPV4 in sensing variations in flow rates. In turn, TRPV4 activation triggers numerous downstream cellular responses stimulated by elevated intracellular Ca2+ concentrations [Ca2+]i. In this review, we discuss the recent concepts in flow-mediated regulation of solute homeostasis by TRPV4 in different segments of renal nephron. Specifically, we summarize the evidence for TRPV4 involvement in endocytosis-mediated albumin uptake in the proximal tubule, reactive oxygen species (ROS) generation in the ascending loop of Henle, and maintaining K+ homeostasis in the connecting tubule/collecting duct. Finally, we outline the function and significance of TRPV4 in the setting of polycystic kidney disease.


Assuntos
Néfrons , Canais de Cátion TRPV , Albuminas , Hormônios , Rim , Espécies Reativas de Oxigênio , Água
6.
Am J Physiol Renal Physiol ; 318(4): F870-F877, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31984792

RESUMO

Adenosine plays an important role in various aspects of kidney physiology, but the specific targets and mechanisms of actions are not completely understood. The collecting duct has the highest expression of adenosine receptors, particularly adenosine A1 receptors (A1Rs). Interstitial adenosine levels are greatly increased up to a micromolar range in response to dietary salt loading. We have previously shown that the basolateral membrane of principal cells has primarily K+ conductance mediated by Kir4.1/5.1 channels to mediate K+ recycling and to set up a favorable driving force for Na+/K+ exchange (47). Intercalated cells express the Cl- ClC-K2/b channel mediating transcellular Cl- reabsorption. Using patch-clamp electrophysiology in freshly isolated mouse collecting ducts, we found that acute application of adenosine reversely inhibits ClC-K2/b open probability from 0.31 ± 0.04 to 0.17 ± 0.06 and to 0.10 ± 0.05 for 1 and 10 µM, respectively. In contrast, adenosine (10 µM) had no measureable effect on Kir4.1/5.1 channel activity in principal cells. The inhibitory effect of adenosine on ClC-K2/b was abolished in the presence of the A1R blocker 8-cyclopentyl-1,3-dipropylxanthine (10 µM). Consistently, application of the A1R agonist N6-cyclohexyladenosine (1 µM) recapitulated the inhibitory action of adenosine on ClC-K2/b open probability. The effects of adenosine signaling in the collecting duct were independent from its purinergic counterpartner, ATP, having no measurable actions on ClC-K2/b and Kir4.1/5.1. Overall, we demonstrated that adenosine selectively inhibits ClC-K2/b activity in intercalated cells by targeting A1Rs. We propose that inhibition of transcellular Cl- reabsorption in the collecting duct by adenosine would aid in augmenting NaCl excretion during high salt intake.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/farmacologia , Proteínas de Transporte de Ânions/antagonistas & inibidores , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Canais de Cloreto/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptor A1 de Adenosina/metabolismo
7.
FASEB J ; 33(2): 2156-2170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252533

RESUMO

cAMP is a universal second messenger regulating a plethora of processes in the kidney. Two downstream effectors of cAMP are PKA and exchange protein directly activated by cAMP (Epac), which, unlike PKA, is often linked to elevation of [Ca2+]i. While both Epac isoforms (Epac1 and Epac2) are expressed along the nephron, their relevance in the kidney remains obscure. We combined ratiometric calcium imaging with quantitative immunoblotting, immunofluorescent confocal microscopy, and balance studies in mice lacking Epac1 or Epac2 to determine the role of Epac in renal water-solute handling. Epac1-/- and Epac2-/- mice developed polyuria despite elevated arginine vasopressin levels. We did not detect major deficiencies in arginine vasopressin [Ca2+]i signaling in split-opened collecting ducts or decreases in aquaporin water channel type 2 levels. Instead, sodium-hydrogen exchanger type 3 levels in the proximal tubule were dramatically reduced in Epac1-/- and Epac2-/- mice. Water deprivation revealed persisting polyuria, impaired urinary concentration ability, and augmented urinary excretion of Na+ and urea in both mutant mice. In summary, we report a nonredundant contribution of Epac isoforms to renal function. Deletion of Epac1 and Epac2 decreases sodium-hydrogen exchanger type 3 expression in the proximal tubule, leading to polyuria and osmotic diuresis.-Cherezova, A., Tomilin, V., Buncha, V., Zaika, O., Ortiz, P. A., Mei, F., Cheng, X., Mamenko, M., Pochynyuk, O. Urinary concentrating defect in mice lacking Epac1 or Epac2.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Capacidade de Concentração Renal/genética , Animais , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Sinalização do Cálcio , Diurese , Deleção de Genes , Rim/metabolismo , Rim/fisiologia , Camundongos , Camundongos Knockout , Osmose , Poliúria/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo
8.
Am J Physiol Renal Physiol ; 316(5): F948-F956, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30838874

RESUMO

Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.


Assuntos
Hipopotassemia/prevenção & controle , Túbulos Renais Coletores/metabolismo , Deficiência de Potássio/metabolismo , Potássio na Dieta/metabolismo , Reabsorção Renal , Canais de Cátion TRPV/deficiência , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Concentração de Íons de Hidrogênio , Hipopotassemia/genética , Hipopotassemia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Deficiência de Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Cátion TRPV/genética
9.
FASEB J ; 32(8): 4612-4623, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553832

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is a devastating disorder that is characterized by a progressive decline in renal function as a result of the development of fluid-filled cysts. Defective flow-mediated [Ca2+]i responses and disrupted [Ca2+]i homeostasis have been repeatedly associated with cyst progression in ADPKD. We have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) channel is imperative for flow-mediated [Ca2+]i responses in murine distal renal tubule cells. To determine whether compromised TRPV4 function contributes to aberrant Ca2+ regulation in ADPKD, we assessed TRPV4 function in primary cells that were cultured from ADPKD and normal human kidneys (NHKs). Single-channel TRPV4 activity and TRPV4-dependent Ca2+ influxes were drastically reduced in ADPKD cells, which correlated with distorted [Ca2+]i signaling. Whereas total TRPV4 protein levels were comparable in NHK and ADPKD cells, we detected a marked decrease in TRPV4 glycosylation in ADPKD cells. Tunicamycin-induced deglycosylation inhibited TRPV4 activity and compromised [Ca2+]i signaling in NHK cells. Overall, we demonstrate that TRPV4 glycosylation and channel activity are diminished in human ADPKD cells compared with NHK cells, and that this contributes significantly to the distorted [Ca2+]i dynamics. We propose that TRPV4 stimulation may be beneficial for restoring [Ca2+]i homeostasis in cyst cells, thereby interfering with ADPKD progression.-Tomilin, V., Reif, G. A., Zaika, O., Wallace, D. P., Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetulus , Glicosilação , Humanos , Rim/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
10.
J Cell Physiol ; 233(9): 7217-7225, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574718

RESUMO

ENaC-mediated sodium reabsorption in the collecting duct (CD) is a critical determinant of urinary sodium excretion. Existing evidence suggest direct stimulatory actions of Angiotensin II (Ang II) on ENaC in the CD, independently of the aldosterone-mineralocorticoid receptor (MR) signaling. Deletion of the major renal AT1 receptor isoform, AT1a R, decreases blood pressure and reduces ENaC abundance despite elevated aldosterone levels. The mechanism of this insufficient compensation is not known. Here, we used patch clamp electrophysiology in freshly isolated split-opened CDs to investigate how AT1a R dysfunction compromises functional ENaC activity and its regulation by dietary salt intake. Ang II had no effect on ENaC activity in CDs from AT1a R -/- mice suggesting no complementary contribution of AT2 receptors. We next found that AT1a R deficient mice had lower ENaC activity when fed with low (<0.01% Na+ ) and regular (0.32% Na+ ) but not with high (∼2% Na+ ) salt diet, when compared to the respective values obtained in Wild type (WT) animals. Inhibition of AT1 R with losartan in wild-type animals reproduces the effects of genetic ablation of AT1a R on ENaC activity arguing against contribution of developmental factors. Interestingly, manipulation with aldosterone-MR signaling via deoxycosterone acetate (DOCA) and spironolactone had much reduced influence on ENaC activity upon AT1a R deletion. Consistently, AT1a R -/- mice have a markedly diminished MR abundance in cytosol. Overall, we conclude that AT1a R deficiency elicits a complex inhibitory effect on ENaC activity by attenuating ENaC Po and precluding adequate compensation via aldosterone cascade due to decreased MR availability.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Receptor Tipo 1 de Angiotensina/deficiência , Aldosterona/farmacologia , Angiotensina II/farmacologia , Animais , Losartan/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia
11.
Pflugers Arch ; 470(2): 339-353, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134279

RESUMO

The renal collecting duct contains two distinct cell types, principal and intercalated cells, expressing potassium Kir4.1/5.1 (KCNJ10/16) and chloride ClC-K2 (ClC-Kb in humans) channels on their basolateral membrane, respectively. Both channels are thought to play important roles in controlling systemic water-electrolyte balance and blood pressure. However, little is known about mechanisms regulating activity of Kir4.1/5.1 and ClC-K2/b. Here, we employed patch clamp analysis at the single channel and whole cell levels in freshly isolated mouse collecting ducts to investigate regulation of Kir4.1/5.1 and ClC-K2/b by dietary K+ and Cl- intake. Treatment of mice with high K+ and high Cl- diet (6% K+, 5% Cl-) for 1 week significantly increased basolateral K+-selective current, single channel Kir4.1/5.1 activity and induced hyperpolarization of basolateral membrane potential in principal cells when compared to values in mice on a regular diet (0.9% K+, 0.5% Cl-). In contrast, basolateral Cl--selective current and single channel ClC-K2/b activity was markedly decreased in intercalated cells under this condition. Substitution of dietary K+ to Na+ in the presence of high Cl- exerted a similar inhibiting action of ClC-K2/b suggesting that the channel is sensitive to variations in dietary Cl- per se. Cl--sensitive with-no-lysine kinase (WNK) cascade has been recently proposed to orchestrate electrolyte transport in the distal tubule during variations of dietary K+. However, co-expression of WNK1 or its major downstream effector Ste20-related proline-alanine-rich kinase (SPAK) had no effect on ClC-Kb over-expressed in Chinese hamster ovary (CHO) cells. Treatment of mice with high K+ diet without concomitant elevations in dietary Cl- (6% K+, 0.5% Cl-) elicited a comparable increase in basolateral K+-selective current, single channel Kir4.1/5.1 activity in principal cells, but had no significant effect on ClC-K2/b activity in intercalated cells. Furthermore, stimulation of aldosterone signaling by Deoxycorticosterone acetate (DOCA) recapitulated the stimulatory actions of high K+ intake on Kir4.1/5.1 channels in principal cells but was ineffective to alter ClC-K2/b activity and basolateral Cl- conductance in intercalated cells. In summary, we report that variations of dietary K+ and Cl- independently regulate basolateral potassium and chloride conductance in principal and intercalated cells. We propose that such discrete mechanism might contribute to fine-tuning of urinary excretion of electrolytes depending on dietary intake.


Assuntos
Potenciais de Ação , Cloretos/metabolismo , Dieta , Túbulos Renais Coletores/metabolismo , Potássio/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Células Cultivadas , Canais de Cloreto/metabolismo , Cloretos/administração & dosagem , Cloretos/farmacologia , Cricetinae , Cricetulus , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/administração & dosagem , Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
12.
Kidney Int ; 91(6): 1398-1409, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28187982

RESUMO

To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.


Assuntos
Hiperpotassemia/metabolismo , Túbulos Renais/metabolismo , Potássio na Dieta/metabolismo , Eliminação Renal , Canais de Cátion TRPV/metabolismo , Adaptação Fisiológica , Animais , Cálcio/metabolismo , Predisposição Genética para Doença , Homeostase , Hiperpotassemia/genética , Hiperpotassemia/fisiopatologia , Túbulos Renais/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Potássio na Dieta/administração & dosagem , Receptores de Mineralocorticoides/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
13.
J Am Soc Nephrol ; 27(7): 2035-48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574044

RESUMO

Store-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca(2+)) sensor that triggers SOCE. Balance studies revealed increased urine volume, hypertonic plasma, polydipsia, and impaired urinary concentrating ability accompanied by elevated circulating arginine vasopressin (AVP) levels in SHR-A3 compared with SHR-B2. Isolated, split-open collecting ducts (CD) from SHR-A3 displayed decreased basal intracellular Ca(2+) levels and a major defect in SOCE. Consequently, AVP failed to induce the sustained intracellular Ca(2+) mobilization that requires SOCE in CD cells from SHR-A3. This effect decreased the abundance of aquaporin 2 and enhanced its intracellular retention, suggesting impaired sensitivity of the CD to AVP in SHR-A3. Stim1 knockdown in cultured mpkCCDc14 cells reduced SOCE and basal intracellular Ca(2+) levels and prevented AVP-induced translocation of aquaporin 2, further suggesting the effects in SHR-A3 result from the expression of truncated STIM1. Overall, these results identify a novel mechanism of nephrogenic diabetes insipidus and uncover a role of SOCE in renal water handling.


Assuntos
Canais de Cálcio/metabolismo , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/metabolismo , Animais , Aquaporina 2/fisiologia , Arginina Vasopressina/fisiologia , Células Cultivadas , Masculino , Ratos , Ratos Endogâmicos SHR/genética , Molécula 1 de Interação Estromal/fisiologia
14.
Am J Physiol Renal Physiol ; 310(10): F923-30, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792067

RESUMO

Since its identification as the underlying molecular cause of Bartter's syndrome type 3, ClC-Kb (ClC-K2 in rodents, henceforth it will be referred as ClC-Kb/2) is proposed to play an important role in systemic electrolyte balance and blood pressure regulation by controlling basolateral Cl(-) exit in the distal renal tubular segments from the cortical thick ascending limb to the outer medullary collecting duct. Considerable experimental and clinical effort has been devoted to the identification and characterization of disease-causing mutations as well as control of the channel by its cofactor, barttin. However, we have only begun to unravel the role of ClC-Kb/2 in different tubular segments and to reveal the regulators of its expression and function, e.g., insulin and IGF-1. In this review we discuss recent experimental evidence in this regard and highlight unexplored questions critical to understanding ClC-Kb/2 physiology in the kidney.


Assuntos
Canais de Cloreto/metabolismo , Túbulos Renais Distais/metabolismo , Animais , Síndrome de Bartter/genética , Canais de Cloreto/genética , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Túbulos Renais Coletores/metabolismo
15.
Am J Physiol Renal Physiol ; 310(4): F311-21, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26632606

RESUMO

Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 µM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 µM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 µM), but not fluoxetine (100 µM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 µM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD.


Assuntos
Membrana Celular/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Túbulos Renais Coletores/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Túbulos Renais Coletores/química , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Inibidores de Fosfoinositídeo-3 Quinase , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Transdução de Sinais/efeitos dos fármacos , Canal Kir5.1
16.
Proc Natl Acad Sci U S A ; 110(14): 5600-5, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23503843

RESUMO

To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.


Assuntos
Aldosterona/sangue , Regulação da Expressão Gênica/fisiologia , Hiperaldosteronismo/etiologia , Natriurese/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Amilorida/farmacologia , Angiotensina II/sangue , Animais , Pressão Sanguínea/efeitos dos fármacos , Primers do DNA/genética , Regulação da Expressão Gênica/genética , Taxa de Filtração Glomerular/fisiologia , Hiperaldosteronismo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Renina/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Espironolactona/farmacologia , Fator de Crescimento Transformador beta1/genética , Urinálise
17.
Am J Physiol Renal Physiol ; 308(1): F39-48, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339702

RESUMO

Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 µM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Canais de Cloreto/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Túbulos Renais Coletores/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
18.
J Biol Chem ; 288(28): 20306-14, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23709216

RESUMO

We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca(2+)]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca(2+)]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca(2+)]i responses and greatly increased basal [Ca(2+)]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Néfrons/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Fura-2/química , Fura-2/metabolismo , Técnicas In Vitro , Indóis/farmacologia , Isoquinolinas/farmacologia , Túbulos Renais Coletores/metabolismo , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Morfolinas/farmacologia , Néfrons/efeitos dos fármacos , Perfusão/métodos , Ésteres de Forbol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores
19.
Curr Opin Nephrol Hypertens ; 23(2): 122-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378775

RESUMO

PURPOSE OF REVIEW: Locally produced peptide hormones kinins, such as bradykinin, are thought to oppose many of the prohypertensive actions of the renin-angiotensin-aldosterone system. In the kidney, bradykinin, via stimulation of B2 receptors (B2R), favors natriuresis mostly due to the inhibition of tubular Na reabsorption. Recent experimental evidence identifies the epithelial Na channel (ENaC) as a key end effector of bradykinin actions in the distal tubular segments. The focus of this review is the physiological relevance and molecular details of the bradykinin signal to ENaC. RECENT FINDINGS: The recent epidemiological GenSalt study demonstrated that genetic variants of the gene encoding B2R show significant associations with the salt sensitivity of blood pressure. Bradykinin was shown to have an inhibitory effect on the distal nephron sodium transport via stimulation of B2 receptor-phospholipase C (B2R-PLC) cascade to decrease ENaC open probability. Genetic ablation of bradykinin receptors in mice led to an augmented ENaC function, particularly during elevated sodium intake, likely contributing to the salt-sensitive hypertensive phenotype. Furthermore, augmentation of bradykinin signaling in the distal nephron was demonstrated to be an important component of the natriuretic and antihypertensive effects of angiotensin converting enzyme inhibition. SUMMARY: Salt-sensitive inhibition of ENaC activity by bradykinin greatly advances our understanding of the molecular mechanisms that are responsible for shutting down distal tubule sodium reabsorption during volume expanded conditions to avoid salt-sensitive hypertension.


Assuntos
Bradicinina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Equilíbrio Hidroeletrolítico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Canais Epiteliais de Sódio/efeitos dos fármacos , Variação Genética , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Néfrons/efeitos dos fármacos , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Fosfolipases Tipo C/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Desequilíbrio Hidroeletrolítico/metabolismo , Desequilíbrio Hidroeletrolítico/fisiopatologia
20.
J Am Soc Nephrol ; 24(4): 604-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23411787

RESUMO

The molecular mechanism of cyst formation and expansion in autosomal recessive polycystic kidney disease (ARPKD) is poorly understood, but impaired mechanosensitivity to tubular flow and dysfunctional calcium signaling are important contributors. The activity of the mechanosensitive Ca(2+)-permeable TRPV4 channel underlies flow-dependent Ca(2+) signaling in murine collecting duct (CD) cells, suggesting that this channel may contribute to cystogenesis in ARPKD. Here, we developed a method to isolate CD-derived cysts and studied TRPV4 function in these cysts laid open as monolayers and in nondilated split-open CDs in a rat model of ARPKD. In freshly isolated CD-derived cyst monolayers, we observed markedly impaired TRPV4 activity, abnormal subcellular localization of the channel, disrupted TRPV4 glycosylation, decreased basal [Ca(2+)]i, and loss of flow-mediated [Ca(2+)]i signaling. In contrast, nondilated CDs of these rats exhibited functional TRPV4 with largely preserved mechanosensitive properties. Long-term systemic augmentation of TRPV4 activity with a selective TRPV4 activator significantly attenuated the renal manifestations of ARPKD in a time-dependent manner. At the cellular level, selective activation of TRPV4 restored mechanosensitive Ca(2+) signaling as well as the function and subcellular distribution of TRPV4. In conclusion, the functional status of TRPV4, which underlies mechanosensitive Ca(2+) signaling in CD cells, inversely correlates with renal cystogenesis in ARPKD. Augmenting TRPV4 activity may have therapeutic potential in ARPKD.


Assuntos
Cálcio/metabolismo , Cistos/metabolismo , Túbulos Renais Coletores/patologia , Rim Policístico Autossômico Recessivo/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cistos/fisiopatologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Rim Policístico Autossômico Recessivo/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa