Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cutan Pathol ; 51(11): 868-875, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39081081

RESUMO

BACKGROUND: Primary cutaneous marginal zone lymphoma (PCMZL) and primary cutaneous CD4+ small/medium T-cell lymphoproliferative disease (CD4+ TLPD) are two distinct entities with excellent prognosis; however, they show profound clinical and histopathological similarities, leading to differential diagnostic uncertainty. AIMS: Our aim was to review and reanalyze cases of primary cutaneous lymphoproliferations diagnosed at Semmelweis University, featuring characteristics of PCMZL and CD4+ TLPD. MATERIALS AND METHODS: Cutaneous lymphoma biopsy specimens between 2018 and 2022 were collected and re-evaluated. Medical history, clinical picture, imaging, and laboratory findings were collected. Immunohistochemical staining for CD20, CD3, BCL6, CD10, PD1, CD3, CD4, CD8, and PCR tests for IGH, IGK, TCRB, and TCRG were repeated in selected cases. RESULTS: Among 55 cases diagnosed as PCMZL (16) or CD4+ TLPD (39), 3 patients had been diagnosed with both LPDs at different time points of their disease course. Four additional patients were identified with single lesions featuring overlapping histopathological characteristics of both LPDs and both monoclonal IGH and TCR rearrangements. All patients are currently in complete remission with local treatment. CONCLUSION: We propose that besides the overlapping histopathological, molecular, and clinical features, the subsequent appearance of PCMZL and CD4+ TLPD in a short timeframe in the same patients may suggest a common pathogenic background.


Assuntos
Linfoma de Zona Marginal Tipo Células B , Neoplasias Cutâneas , Humanos , Linfoma de Zona Marginal Tipo Células B/patologia , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Idoso , Adulto , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/metabolismo , Transtornos Linfoproliferativos/diagnóstico , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/imunologia , Diagnóstico Diferencial , Idoso de 80 Anos ou mais , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/diagnóstico
2.
Genes Chromosomes Cancer ; 61(10): 622-628, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545820

RESUMO

There is growing body of evidence supporting the role of germline mutations in the pathogenesis of pediatric central nervous system (CNS) tumors, and the widespread use of next-generation sequencing (NGS) panels facilitates their detection. Variants of the MUTYH gene are increasingly recognized as suspected germline background of various extraintestinal malignancies, besides their well-characterized role in the polyposis syndrome associated with biallelic mutations. Using a multigene NGS panel (Illumina TruSight Oncology 500), we detected one H3 G34V- and one H3 K27M-mutant pediatric high-grade diffuse glioma, in association with c.1178G>A (p.G393D) and c.916C>T (p.R306C) MUTYH variants, respectively. Both MUTYH mutations were germline, heterozygous and inherited, according to the subsequent genetic testing of the patients and their first-degree relatives. In the H3 K27M-mutant glioma, amplifications affecting the 4q12 region were also detected, in association with KDR-PDGFRA, KIT-PDGFRA, and KDR-CHIC2 fusions, previously unreported in this entity. Among 47 other CNS tumors of various histological types tested with the same NGS panel in our institution, only one adult glioblastoma harbored MUTYH mutation. Together with a single previous report, our data raises the possibility of an association between germline MUTYH mutations and CNS malignancies, particularly in pediatric histone H3-mutant gliomas.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , DNA Glicosilases , Glioma , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , DNA Glicosilases/genética , Mutação em Linhagem Germinativa , Glioma/genética , Glioma/patologia , Humanos
3.
J Immunol ; 201(12): 3793-3803, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30464050

RESUMO

Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2 Cre/Cre Mcl1 flox/flox (Mcl1 ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1 ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1 ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1 ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1 ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1 flox/flox (Mcl1 ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1 ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease.


Assuntos
Artrite/genética , Candida albicans/fisiologia , Candidíase/genética , Epidermólise Bolhosa Adquirida/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neutropenia/genética , Neutrófilos/fisiologia , Infecções Estafilocócicas/genética , Staphylococcus aureus/fisiologia , Animais , Modelos Animais de Doenças , Fertilidade/genética , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
4.
Front Oncol ; 13: 999810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910630

RESUMO

Significant improvements in the survival rates of paediatric cancer have been achieved over the past decade owing to recent advances in therapeutic and diagnostic strategies. However, disease progression and relapse remain a major challenge for the clinical management of paediatric angiosarcoma. Comprehensive genomic profiling of these rare tumours using high-throughput sequencing technologies may improve patient stratification and identify actionable biomarkers for therapeutic intervention. Here, we describe the clinical, histopathological, immunohistochemical and molecular profile of a novel and precision medicine-informed case where a KHDRBS1-NTRK3 fusion determined by next-generation sequencing-based comprehensive genomic profiling led to complete and sustained remission (clinical and radiological response) in an otherwise incurable disease. Our patient represents the first paediatric angiosarcoma harbouring a targetable NTRK3 fusion in the literature and demonstrates the first example of targeting this alteration in angiosarcoma using larotrectinib, an NTRK inhibitor. Clinical and radiological remission was achieved in under two months of therapy, and the patient is currently in complete remission, 4 month after stopping larotrectinib therapy, which was given over 17 months with only mild side effects reported. Therefore, this remarkable case exemplifies the true essence of precision-based care by incorporating conventional pathology with the why, when, and how to test for rare oncogenic drivers and agnostic biomarkers in paediatric angiosarcoma.

5.
mBio ; 12(4): e0160821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465030

RESUMO

The spleen tyrosine kinase (Syk) and the downstream adaptor protein CARD9 are crucial signaling molecules in antimicrobial immunity. Candida parapsilosis is an emerging fungal pathogen with a high incidence in neonates, while Candida albicans is the most common agent of candidiasis. While signaling through Syk/CARD9 promotes protective host mechanisms in response to C. albicans, its function in immunity against C. parapsilosis remains unclear. Here, we generated Syk-/- and CARD9-/- bone marrow chimeric mice to study the role of Syk/CARD9 signaling in immune responses to C. parapsilosis compared to C. albicans. We demonstrate various functions of this pathway (e.g., phagocytosis, phagosome acidification, and killing) in Candida-challenged, bone marrow-derived macrophages with differential involvement of Syk and CARD9 along with species-specific differences in cytokine production. We report that Syk-/- or CARD9-/- chimeras rapidly display high susceptibility to C. albicans, while C. parapsilosis infection exacerbates over a prolonged period in these animals. Thus, our results establish that Syk and CARD9 contribute to systemic resistance to C. parapsilosis and C. albicans differently. Additionally, we confirm prior studies but also detail new insights into the fundamental roles of both proteins in immunity against C. albicans. Our data further suggest that Syk has a more prominent influence on anti-Candida immunity than CARD9. Therefore, this study reinforces the Syk/CARD9 pathway as a potential target for anti-Candida immune therapy. IMPORTANCE While C. albicans remains the most clinically significant Candida species, C. parapsilosis is an emerging pathogen with increased affinity to neonates. Syk/CARD9 signaling is crucial in immunity to C. albicans, but its role in in vivo responses to other pathogenic Candida species is largely unexplored. We used mice with hematopoietic systems deficient in Syk or CARD9 to comparatively study the function of these proteins in anti-Candida immunity. We demonstrate that Syk/CARD9 signaling has a protective role against C. parapsilosis differently than against C. albicans. Thus, this study is the first to reveal that Syk can exert immune responses during systemic Candida infections species specifically. Additionally, Syk-dependent immunity to a nonalbicans Candida species in an in vivo murine model has not been reported previously. We highlight that the contribution of Syk and CARD9 to fungal infections are not identical and underline this pathway as a promising immune-therapeutic target to fight Candida infections.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Candida parapsilosis/imunologia , Candidíase/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Transdução de Sinais/imunologia , Quinase Syk/metabolismo , Animais , Medula Óssea , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Candida albicans/imunologia , Candida parapsilosis/metabolismo , Candidíase/metabolismo , Quimera , Feminino , Masculino , Camundongos , Quinase Syk/genética , Quinase Syk/imunologia
6.
Sci Rep ; 7: 43129, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225025

RESUMO

Candida albicans and C. parapsilosis are human pathogens causing severe infections. The NLRP3 inflammasome plays a crucial role in host defence against C. albicans, but it has been previously unknown whether C. parapsilosis activates this complex. Here we show that C. parapsilosis induces caspase-1 activation and interleukin-1ß (IL-1ß) secretion in THP-1, as well as primary, human macrophages. IL-1ß secretion was dependent on NLRP3, K+-efflux, TLR4, IRAK, Syk, caspase-1, caspase-8 and NADPH-oxidase. Importantly, while C. albicans induced robust IL-1ß release after 4 h, C. parapsilosis was not able to stimulate the production of IL-1ß after this short incubation period. We also found that C. parapsilosis was phagocytosed to a lesser extent, and induced significantly lower ROS production and lysosomal cathepsin B release compared to C. albicans, suggesting that the low extent of inflammasome activation by C. parapsilosis may result from a delay in the so-called "signal 2". In conclusion, this is the first study to examine the molecular pathways responsible for the IL-1ß production in response to a non-albicans Candida species, and these results enhance our understanding about the immune response against C. parapsilosis.


Assuntos
Candida parapsilosis/imunologia , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Candida albicans/imunologia , Caspase 1/metabolismo , Catepsina B/metabolismo , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo
7.
Front Microbiol ; 8: 1197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713338

RESUMO

Candida parapsilosis is an opportunistic human fungal pathogen that poses a serious threat to low birth weight neonates, particularly at intensive care units. In premature infants, the distinct immune responses to Candida infections are not well understood. Although several in vivo models exist to study systemic candidiasis, only a few are available to investigate dissemination in newborns. In addition, the majority of related studies apply intraperitoneal infection rather than intravenous inoculation of murine infants that may be less efficient when studying systemic invasion. In this study, we describe a novel and conveniently applicable intravenous neonatal mouse model to monitor systemic C. parapsilosis infection. Using the currently developed model, we aimed to analyze the pathogenic properties of different C. parapsilosis strains. We infected 2 days-old BALB/c mouse pups via the external facial vein with different doses of C. parapsilosis strains. Homogenous dissemination of yeast cells was found in the spleen, kidney, liver and brain of infected newborn mice. Colonization of harvested organs was also confirmed by histological examinations. Fungal burdens in newborn mice showed a difference for two isolates of C. parapsilosis. C. parapsilosis CLIB infection resulted in higher colonization of the spleen, kidney and liver of neonatal mice compared to the C. parapsilosis GA1 strain at day 2 after the infection. In a comprehensive study with the adult mice infection, we also presented the attenuated virulence of a C. parapsilosis cell wall mutant (OCH1) in this model. Significantly less och1Δ/Δ null mutant cells were recovered from the spleen, kidney and liver of newborn mice compared to the wild type strain. When investigating the cytokine response of neonatal mice to C. parapsilosis infection, we found elevated TNFα, KC, and IL-1ß expression levels in all organs examined when compared to the uninfected control. Furthermore, all three measured cytokines showed a significantly elevated expression when newborn mice were infected with och1Δ/Δ cells compared to the wild type strain. This result further supported the inclusion of OCH1 in C. parapsilosis pathogenicity. To our current knowledge, this is the first study that uses a mice neonatal intravenous infection model to investigate C. parapsilosis infection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa