Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5676, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167829

RESUMO

To identify drivers of sensitivity and resistance to Protein Arginine Methyltransferase 5 (PRMT5) inhibition, we perform a genome-wide CRISPR/Cas9 screen. We identify TP53 and RNA-binding protein MUSASHI2 (MSI2) as the top-ranked sensitizer and driver of resistance to specific PRMT5i, GSK-591, respectively. TP53 deletion and TP53R248W mutation are biomarkers of resistance to GSK-591. PRMT5 expression correlates with MSI2 expression in lymphoma patients. MSI2 depletion and pharmacological inhibition using Ro 08-2750 (Ro) both synergize with GSK-591 to reduce cell growth. Ro reduces MSI2 binding to its global targets and dual treatment of Ro and PRMT5 inhibitors result in synergistic gene expression changes including cell cycle, P53 and MYC signatures. Dual MSI2 and PRMT5 inhibition further blocks c-MYC and BCL-2 translation. BCL-2 depletion or inhibition with venetoclax synergizes with a PRMT5 inhibitor by inducing reduced cell growth and apoptosis. Thus, we propose a therapeutic strategy in lymphoma that combines PRMT5 with MSI2 or BCL-2 inhibition.


Assuntos
Linfoma de Células B , Linfoma , Linhagem Celular Tumoral , Humanos , Linfoma/genética , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética
2.
Nat Genet ; 53(5): 707-718, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33846634

RESUMO

Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.


Assuntos
Predisposição Genética para Doença , Doenças Hematológicas/genética , Íntrons/genética , Neoplasias/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Autorrenovação Celular , Transformação Celular Neoplásica/patologia , Células Clonais , Feminino , Genoma Humano , Doenças Hematológicas/patologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos Knockout , Síndrome de Noonan/genética , Linhagem , RNA/metabolismo , Splicing de RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Baço/patologia , Fatores de Transcrição/genética
3.
Biomaterials ; 142: 124-135, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734180

RESUMO

Myoepithelial cells are flat, stellate cells present in exocrine tissues including the salivary glands. While myoepithelial cells have been studied extensively in mammary and lacrimal gland tissues, less is known of the function of myoepithelial cells derived from human salivary glands. Several groups have isolated tumorigenic myoepithelial cells from cancer specimens, however, only one report has demonstrated isolation of normal human salivary myoepithelial cells needed for use in salivary gland tissue engineering applications. Establishing a functional organoid model consisting of myoepithelial and secretory acinar cells is therefore necessary for understanding the coordinated action of these two cell types in unidirectional fluid secretion. Here, we developed a bottom-up approach for generating salivary gland microtissues using primary human salivary myoepithelial cells (hSMECs) and stem/progenitor cells (hS/PCs) isolated from normal salivary gland tissues. Phenotypic characterization of isolated hSMECs confirmed that a myoepithelial cell phenotype consistent with that from other exocrine tissues was maintained over multiple passages of culture. Additionally, hSMECs secreted basement membrane proteins, expressed adrenergic and cholinergic neurotransmitter receptors, and released intracellular calcium [Ca2+i] in response to parasympathetic agonists. In a collagen I contractility assay, activation of contractile machinery was observed in isolated hSMECs treated with parasympathetic agonists. Recombination of hSMECs with assembled hS/PC spheroids in a microwell system was used to create microtissues resembling secretory complexes of the salivary gland. We conclude that the engineered salivary gland microtissue complexes provide a physiologically relevant model for both mechanistic studies and as a building block for the successful engineering of the salivary gland for restoration of salivary function in patients suffering from hyposalivation.


Assuntos
Células Epiteliais/citologia , Glândulas Salivares/fisiologia , Engenharia Tecidual/métodos , Cálcio/metabolismo , Separação Celular , Colágeno Tipo I/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Agonistas Muscarínicos/farmacologia , Neurotransmissores/metabolismo , Fenótipo , Receptores Muscarínicos/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa