Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO Rep ; 25(1): 45-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177900

RESUMO

Fusion of the outer mitochondrial membrane (OMM) is regulated by mitofusin 1 (MFN1) and 2 (MFN2), yet the differential contribution of each of these proteins is less understood. Mitochondrial carrier homolog 2 (MTCH2) also plays a role in mitochondrial fusion, but its exact function remains unresolved. MTCH2 overexpression enforces MFN2-independent mitochondrial fusion, proposedly by modulating the phospholipid lysophosphatidic acid (LPA), which is synthesized by glycerol-phosphate acyl transferases (GPATs) in the endoplasmic reticulum (ER) and the OMM. Here we report that MTCH2 requires MFN1 to enforce mitochondrial fusion and that fragmentation caused by loss of MTCH2 can be specifically counterbalanced by overexpression of MFN2 but not MFN1, partially independent of its GTPase activity and mitochondrial localization. Pharmacological inhibition of GPATs (GPATi) or silencing ER-resident GPATs suppresses MFN2's ability to compensate for the loss of MTCH2. Loss of either MTCH2, MFN2, or GPATi does not impair stress-induced mitochondrial fusion, whereas the combined loss of MTCH2 and GPATi or the combined loss of MTCH2 and MFN2 does. Taken together, we unmask two cooperative mechanisms that sustain mitochondrial fusion.


Assuntos
GTP Fosfo-Hidrolases , Lisofosfolipídeos , Mitocôndrias , Mitocôndrias/genética , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
J Biol Chem ; 288(30): 22111-27, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23744079

RESUMO

Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspase 8/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cinética , Lipossomos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/fisiologia , Modelos Biológicos , Modelos Moleculares , Mutação , Permeabilidade , Ligação Proteica , Conformação Proteica , Fatores de Tempo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
3.
Mol Cell Biol ; 25(11): 4579-90, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15899861

RESUMO

BID, a proapoptotic BCL-2 family member, plays an essential role in the tumor necrosis factor alpha (TNF-alpha)/Fas death receptor pathway in vivo. Activation of the TNF-R1 receptor results in the cleavage of BID into truncated BID (tBID), which translocates to the mitochondria and induces the activation of BAX or BAK. In TNF-alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex. Here we describe the biochemical purification of this complex and the identification of mitochondrial carrier homolog 2 (Mtch2) as part of this complex. Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein family. Our studies with mouse liver mitochondria indicate that Mtch2 is an integral membrane protein exposed on the surface of mitochondria. Using blue-native gel electrophoresis we revealed that in viable FL5.12 cells Mtch2 resides in a protein complex of ca. 185 kDa and that the addition of TNF-alpha to these cells leads to the recruitment of tBID and BAX to this complex. Importantly, this recruitment was partially inhibited in FL5.12 cells stably expressing BCL-X(L). These results implicate Mtch2 as a mitochondrial target of tBID and raise the possibility that the Mtch2-resident complex participates in the mitochondrial apoptotic program.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Aminoácidos , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/análise , Sequência Conservada , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Camundongos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transdução de Sinais , Proteína bcl-X
4.
Nat Commun ; 9(1): 5132, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510213

RESUMO

The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.


Assuntos
Dinâmica Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/citologia
5.
Obesity (Silver Spring) ; 25(3): 616-625, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28127879

RESUMO

OBJECTIVE: More than one-third of U.S. adults have obesity, causing an alarming increase in obesity-related comorbidities such as type 2 diabetes. The functional role of mitochondrial carrier homolog 2 (MTCH2), a human obesity-associated gene, in lipid homeostasis was investigated in Caenorhabditis elegans, cell culture, and mice. METHODS: In C. elegans, MTCH2/MTCH-1 was depleted, using RNAi and a genetic mutant, and overexpressed to assess its effect on lipid accumulation. In cells and mice, shRNAs against MTCH2 were used for knockdown and MTCH2 overexpression vectors were used for overexpression to study the role of this gene in fat accumulation. RESULTS: MTCH2 knockdown reduced lipid accumulation in adipocyte-like cells in vitro and in C. elegans and mice in vivo. MTCH2 overexpression increased fat accumulation in cell culture, C. elegans, and mice. Acute MTCH2 inhibition reduced fat accumulation in animals subjected to a high-fat diet. Finally, MTCH2 influenced estrogen receptor 1 (ESR1) activity. CONCLUSIONS: MTCH2 is a conserved regulator of lipid homeostasis. MTCH2 was found to be both required and sufficient for lipid homeostasis shifts, suggesting that pharmacological inhibition of MTCH2 could be therapeutic for treatment of obesity and related disorders. MTCH2 could influence lipid homeostasis through inhibition of ESR1 activity.


Assuntos
Adipócitos/metabolismo , Homeostase/genética , Metabolismo dos Lipídeos/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Receptor alfa de Estrogênio/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Obesidade/genética
6.
Sci Rep ; 7: 44401, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276496

RESUMO

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Assuntos
Cálcio/metabolismo , Cognição/fisiologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Neurônios/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Hipocampo/fisiopatologia , Locomoção/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Neurônios/patologia , Equilíbrio Postural/fisiologia , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatologia , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/fisiopatologia , Teste de Desempenho do Rota-Rod , Memória Espacial/fisiologia , Transmissão Sináptica/fisiologia
7.
Cell Rep ; 14(7): 1602-1610, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26876167

RESUMO

Mitochondrial carrier homolog 2 (MTCH2) is a repressor of mitochondrial oxidative phosphorylation (OXPHOS), and its locus is associated with increased BMI in humans. Here, we demonstrate that mice deficient in muscle MTCH2 are protected from diet-induced obesity and hyperinsulinemia and that they demonstrate increased energy expenditure. Deletion of muscle MTCH2 also increases mitochondrial OXPHOS and mass, triggers conversion from glycolytic to oxidative fibers, increases capacity for endurance exercise, and increases heart function. Moreover, metabolic profiling of mice deficient in muscle MTCH2 reveals a preference for carbohydrate utilization and an increase in mitochondria and glycolytic flux in muscles. Thus, MTCH2 is a critical player in muscle biology, modulating metabolism and mitochondria mass as well as impacting whole-body energy homeostasis.


Assuntos
Metaboloma/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Animais , Composição Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Expressão Gênica , Glicólise/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosforilação Oxidativa , Condicionamento Físico Animal
8.
Nat Commun ; 6: 7901, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26219591

RESUMO

The metabolic state of stem cells is emerging as an important determinant of their fate. In the bone marrow, haematopoietic stem cell (HSC) entry into cycle, triggered by an increase in intracellular reactive oxygen species (ROS), corresponds to a critical metabolic switch from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). Here we show that loss of mitochondrial carrier homologue 2 (MTCH2) increases mitochondrial OXPHOS, triggering HSC and progenitor entry into cycle. Elevated OXPHOS is accompanied by an increase in mitochondrial size, increase in ATP and ROS levels, and protection from irradiation-induced apoptosis. In contrast, a phosphorylation-deficient mutant of BID, MTCH2's ligand, induces a similar increase in OXPHOS, but with higher ROS and reduced ATP levels, and is associated with hypersensitivity to irradiation. Thus, our results demonstrate that MTCH2 is a negative regulator of mitochondrial OXPHOS downstream of BID, indispensible in maintaining HSC homeostasis.


Assuntos
Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Glicólise/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Fosforilação Oxidativa , Tolerância a Radiação/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos da radiação , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Western Blotting , Ciclo Celular/genética , Diferenciação Celular/genética , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Potencial da Membrana Mitocondrial , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Tamanho Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Nat Cell Biol ; 14(5): 535-41, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446738

RESUMO

BID, a BH3-only BCL2 family member, functions in apoptosis as well as the DNA-damage response. Our previous data demonstrated that BID is an ATM effector acting to induce cell-cycle arrest and inhibition of apoptosis following DNA damage. Here we show that ATM-mediated BID phosphorylation plays an unexpected role in maintaining the quiescence of haematopoietic stem cells (HSCs). Loss of BID phosphorylation leads to escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. We also demonstrate that BID phosphorylation plays a role in protecting HSCs from irradiation, and that regulating both quiescence and survival of HSCs depends on BID's ability to regulate oxidative stress. Moreover, loss of BID phosphorylation, ATM knockout or exposing mice to irradiation leads to an increase in mitochondrial BID, which correlates with an increase in mitochondrial oxidative stress. These results show that the ATM-BID pathway serves as a critical checkpoint for coupling HSC homeostasis and the DNA-damage stress response to enable long-term regenerative capacity.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Proteínas de Ciclo Celular/fisiologia , Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
11.
Nat Cell Biol ; 12(6): 553-562, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20436477

RESUMO

The BH3-only BID protein (BH3-interacting domain death agonist) has a critical function in the death-receptor pathway in the liver by triggering mitochondrial outer membrane permeabilization (MOMP). Here we show that MTCH2/MIMP (mitochondrial carrier homologue 2/Met-induced mitochondrial protein), a novel truncated BID (tBID)-interacting protein, is a surface-exposed outer mitochondrial membrane protein that facilitates the recruitment of tBID to mitochondria. Knockout of MTCH2/MIMP in embryonic stem cells and in mouse embryonic fibroblasts hinders the recruitment of tBID to mitochondria, the activation of Bax/Bak, MOMP, and apoptosis. Moreover, conditional knockout of MTCH2/MIMP in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and prevents the recruitment of tBID to liver mitochondria both in vivo and in vitro. In contrast, MTCH2/MIMP deletion had no effect on apoptosis induced by other pro-apoptotic Bcl-2 family members and no detectable effect on the outer membrane lipid composition. These loss-of-function models indicate that MTCH2/MIMP has a critical function in liver apoptosis by regulating the recruitment of tBID to mitochondria.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/fisiologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Receptores de Morte Celular/metabolismo
12.
Cell ; 122(4): 593-603, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16122426

RESUMO

The "BH3-only" proapoptotic BCL-2 family members are sentinels of intracellular damage. Here, we demonstrated that the BH3-only BID protein partially localizes to the nucleus in healthy cells, is important for apoptosis induced by DNA damage, and is phosphorylated following induction of double-strand breaks in DNA. We also found that BID phosphorylation is mediated by the ATM kinase and occurs in mouse BID on two ATM consensus sites. Interestingly, BID-/- cells failed to accumulate in the S phase of the cell cycle following treatment with the topoisomerase II poison etoposide; reintroducing wild-type BID restored accumulation. In contrast, introducing a nonphosphorylatable BID mutant did not restore accumulation in the S phase and resulted in an increase in cellular sensitivity to etoposide-induced apoptosis. These results implicate BID as an ATM effector and raise the possibility that proapoptotic BID may also play a prosurvival role important for S phase arrest.


Assuntos
Apoptose/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Sítios de Ligação/fisiologia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Etoposídeo/farmacologia , Fibroblastos/metabolismo , Genes cdc/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/fisiologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fase S/efeitos dos fármacos , Fase S/fisiologia , Inibidores da Topoisomerase II , Proteínas Supressoras de Tumor/genética
13.
J Biol Chem ; 277(14): 12237-45, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11805084

RESUMO

Activation of the tumor necrosis factor R1/Fas receptor results in the cleavage of cytosolic BID to truncated tBID. tBID translocates to the mitochondria to induce the oligomerization of BAX or BAK, resulting in the release of cytochrome c (Cyt c). Here we demonstrate that in tumor necrosis factor alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex that does not include BAX or BAK. Using fluorescence resonance energy transfer analysis and co-immunoprecipitation, we demonstrate that tBID-tBID interactions occur in the mitochondria of living cells. Cross-linking experiments using a tBID-GST chimera indicated that tBID forms homotrimers in the mitochondrial membrane. To test the functional consequence of tBID oligomerization, we expressed a chimeric FKBP-tBID molecule. Enforced dimerization of FKBP-tBID by the bivalent ligand FK1012 resulted in Cyt c release, caspase activation, and apoptosis. Surprisingly, enforced dimerization of tBID did not result in the dimerization of either BAX or BAK. Moreover, a tBID BH3 mutant (G94E), which does not interact with or induce the dimerization of either BAX or BAK, formed the 45-kDa complex and induced both Cyt c release and apoptosis. Thus, tBID oligomerization may represent an alternative mechanism for inducing mitochondrial dysfunction and apoptosis.


Assuntos
Apoptose , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Western Blotting , Células COS , Caspase 3 , Caspases/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Citosol/metabolismo , Dimerização , Células HeLa , Humanos , Ligantes , Camundongos , Microscopia Confocal , Modelos Biológicos , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Frações Subcelulares , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
14.
J Biol Chem ; 278(12): 10707-15, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12519725

RESUMO

The proapoptotic activity of BID seems to solely depend upon its cleavage to truncated tBID. Here we demonstrate that expression of a caspase-8 non-cleavable (nc) BID-D59A mutant or expression of wild type (wt) BID induces apoptosis in Bid -/-, caspase-8 -/-, and wt primary MEFs. Western blot analysis indicated that no cleavage products appeared in cells expressing ncBID. ncBID was as effective as wtBID in inducing cytochrome c release, caspase activation, and apoptosis. ncBID and wtBID (nc/wtBID) were much less effective than tBID in localizing to mitochondria and in inducing cytochrome c release, but only slightly less effective in inducing apoptosis. Studies with Apaf-1- and caspase-9-deficient primary MEFs indicated that both proteins were essential for nc/wtBID and for tBID-induced apoptosis. Most importantly, expression of non-apoptotic levels of either ncBID or wtBID in Bid -/- MEFs induced a similar and significant enhancement in apoptosis in response to a variety of death signals, which was accompanied by enhanced localization of BID to mitochondria and cytochrome c release. Thus, these results implicate full-length BID as an active player in the mitochondria during apoptosis.


Assuntos
Apoptose , Proteínas de Transporte/fisiologia , Animais , Fator Apoptótico 1 Ativador de Proteases , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/química , Caspase 3 , Caspase 8 , Caspase 9 , Caspases/fisiologia , Células Cultivadas , Grupo dos Citocromos c/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mutação , Proteínas/fisiologia , Vírus 40 dos Símios/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa