Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Placenta ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38514278

RESUMO

This review considers fully three-dimensional biomaterial environments of varying complexity as these pertain to research on the placenta. The developments in placental cell sources are first considered, along with the corresponding maternal cells with which the trophoblast interact. We consider biomaterial sources, including hybrid and composite biomaterials. Properties and characterization of biomaterials are discussed in the context of material design for specific placental applications. The development of increasingly complicated three-dimensional structures includes examples of advanced fabrication methods such as microfluidic device fabrication and 3D bioprinting, as utilized in a placenta context. The review finishes with a discussion of the potential for in vitro, three-dimensional placenta research to address health disparities and sexual dimorphism, especially in light of the exciting recent changes in the regulatory environment for in vitro devices.

2.
Adv Healthc Mater ; 13(12): e2303928, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38291861

RESUMO

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.


Assuntos
Endométrio , Células Endoteliais , Endométrio/citologia , Endométrio/irrigação sanguínea , Endométrio/metabolismo , Humanos , Feminino , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Polaridade Celular/fisiologia , Microvasos/citologia , Microvasos/fisiologia , Matriz Extracelular/metabolismo , Células Cultivadas
3.
J Mech Behav Biomed Mater ; 154: 106509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518513

RESUMO

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.


Assuntos
Gelatina , Alicerces Teciduais , Hidrogéis , Engenharia Tecidual , Metacrilatos
4.
Heliyon ; 10(12): e32546, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975228

RESUMO

Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.

5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961315

RESUMO

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, we systematically examine the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.

6.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014304

RESUMO

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.

7.
Cell Mol Bioeng ; 15(2): 175-191, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35401843

RESUMO

Introduction: Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200-400 µg/mL at term. Methods: Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal. Results: We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues. Conclusions: Such models provide an important platform to develop a deeper understanding of early pregnancy.

8.
ACS Biomater Sci Eng ; 8(9): 3819-3830, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994527

RESUMO

The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.


Assuntos
Gelatina , Hidrogéis , Colágeno/metabolismo , Endométrio/metabolismo , Células Epiteliais , Matriz Extracelular/metabolismo , Feminino , Gelatina/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Queratina-18/metabolismo , Gravidez , Tenascina/metabolismo
9.
Tissue Eng Part A ; 27(15-16): 1064-1073, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33216701

RESUMO

Trophoblast cells play multiple critical roles in pregnancy, notably modulating blastocyst attachment to the endometrium as well as invading into and actively remodeling the endometrium to facilitate biotransport needs of the growing embryo. Despite the importance of trophoblast invasion for processes essential at early stages of pregnancy, much remains unknown regarding the balance of signaling molecules that may influence trophoblast invasion into the endometrium. The goal of this study was to use three-dimensional trophoblast spheroid motility assays to examine the effect of cues from the maternal-fetal interface on trophoblast motility. We report use of a methacrylamide-functionalized gelatin hydrogel to support quantitative analysis of trophoblast outgrowth area and cell viability. We show that this multidimensional model of trophoblast motility can resolve quantifiable differences in outgrowth area and viability in the presence of a known invasion promoter, epidermal growth factor, and a known invasion inhibitor, transforming growth factor ß1. We then investigate the sensitivity of trophoblast motility to cortisol, a hormone associated with exogenous stressors. Together, this approach provides a toolset to investigate the coordinated action of physiological and pathophysiological processes on early stages of trophoblast invasion.


Assuntos
Gelatina , Trofoblastos , Linhagem Celular , Movimento Celular , Sinais (Psicologia) , Implantação do Embrião , Feminino , Humanos , Hidrogéis , Gravidez
10.
Tissue Eng Part A ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33076787

RESUMO

Trophoblast cells play multiple critical roles in pregnancy, notably modulating blastocyst attachment to the endometrium as well as invading into and actively remodeling the endometrium to facilitate biotransport needs of the growing embryo. Despite the importance of trophoblast invasion for processes essential at early stages of pregnancy, much remains unknown regarding the balance of signaling molecules that may influence trophoblast invasion into the endometrium. The goal of this study was to use three-dimensional trophoblast spheroid motility assays to examine the effect of cues from the maternal-fetal interface on trophoblast motility. We report use of a methacrylamide-functionalized gelatin (GelMA) hydrogel to support quantitative analysis of trophoblast outgrowth area and cell viability. We show this multidimensional model of trophoblast motility can resolve quantifiable differences in outgrowth area and viability in the presence of a known invasion promoter, epidermal growth factor, and a known invasion inhibitor, transforming growth factor ß1. We then investigate the sensitivity of trophoblast motility to cortisol, a hormone associated with exogenous stressors. Together, this approach provides a toolset to investigate the coordinated action of physiological and pathophysiological processes on early stages of trophoblast invasion.

11.
MRS Commun ; 10(1): 83-90, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32719734

RESUMO

Three-dimensional cultures have exciting potential to mimic aspects of healthy and diseased brain tissue to examine the role of physiological conditions on neural biomarkers, as well as disease onset and progression. Hypoxia is associated with oxidative stress, mitochondrial damage, and inflammation, key processes potentially involved in Alzheimer's and multiple sclerosis. We describe the use of an enzymatically-crosslinkable gelatin hydrogel system within a microfluidic device to explore the effects of hypoxia-induced oxidative stress on rat neuroglia, human astrocyte reactivity, and myelin production. This versatile platform offers new possibilities for drug discovery and modeling disease progression.

12.
Interface Focus ; 9(5): 20190016, 2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31485309

RESUMO

The endometrium is the lining of the uterus and site of blastocyst implantation. Each menstrual cycle, the endometrium cycles through rapid phases of growth, remodelling and breakdown. Significant vascular remodelling is also driven by trophoblast cells that form the outer layer of the blastocyst. Trophoblast invasion and remodelling enhance blood flow to the embryo ahead of placentation. Understanding the mechanisms of endometrial vascular remodelling and trophoblast invasion would provide key insights into endometrial physiology and cellular interactions critical for establishment of pregnancy. The objective of this study was to develop a tissue engineering platform to investigate the processes of endometrial angiogenesis and trophoblast invasion in a three-dimensional environment. We report adaptation of a methacrylamide-functionalized gelatin hydrogel that presents matrix stiffness in the range of the native tissue, supports the formation of endometrial endothelial cell networks with human umbilical vein endothelial cells and human endometrial stromal cells as an artificial endometrial perivascular niche and the culture of an endometrial epithelial cell layer, enables culture of a hormone-responsive stromal compartment and provides the capacity to monitor the kinetics of trophoblast invasion. With these studies, we provide a series of techniques that will instruct researchers in the development of endometrial models of increasing complexity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa