Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762037

RESUMO

TP53 is the most frequently mutated gene in human cancers. Most TP53 genomic alterations are missense mutations, which cause a loss of its tumour suppressor functions while providing mutant p53 (mut_p53) with oncogenic features (gain-of-function). Loss of p53 tumour suppressor functions alters the transcription of both protein-coding and non-protein-coding genes. Gain-of-function of mut_p53 triggers modification in gene expression as well; however, the impact of mut_p53 on the transcription of the non-protein-coding genes and whether these non-protein-coding genes affect oncogenic properties of cancer cell lines are not fully explored. In this study, we suggested that LINC01605 (also known as lincDUSP) is a long non-coding RNA regulated by mut_p53 and proved that mut_p53 directly regulates LINC01605 by binding to an enhancer region downstream of the LINC01605 locus. We also showed that the loss or downregulation of LINC01605 impairs cell migration in a breast cancer cell line. Eventually, by performing a combined analysis of RNA-seq data generated in mut_TP53-silenced and LINC01605 knockout cells, we showed that LINC01605 and mut_p53 share common gene pathways. Overall, our findings underline the importance of ncRNAs in the mut_p53 network in breast and ovarian cancer cell lines and in particular the importance of LINC01605 in mut_p53 pro-migratory pathways.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Feminino , Humanos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Longo não Codificante/genética
2.
Rheumatol Int ; 35(4): 619-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25240429

RESUMO

For children with juvenile idiopathic arthritis (JIA) who fail to respond to methotrexate, the delay in identifying the optimal treatment at an early stage of disease can lead to long-term joint damage. Recent studies indicate that relevant variants to predict methotrexate response in JIA are those in 5-aminoimidazole-4-carboxamide ribonucleotide-transformylase (ATIC), inosine-triphosphate-pyrophosphatase (ITPA) and solute-liquid-carrier-19A1 genes. The purpose of the study was, therefore, to explore the role of these candidate genetic factors on methotrexate response in an Italian cohort of children with JIA. Clinical response to methotrexate was evaluated as clinical remission stable for a 6-month period, as ACRPed score and as change in Juvenile Arthritis Disease score. The most relevant SNPs for each gene considered were assayed on patients' DNA. ITPA activity was measured in patients' erythrocytes. Sixty-nine patients with JIA were analyzed: 52.2 % responded to therapy (ACRPed70 score), while 37.7 % reached clinical remission stable for 6 months. ATIC rs2372536 GG genotype was associated with improved clinical remission (adjusted p value = 0.0090). For ITPA, rs1127354 A variant was associated with reduced clinical remission: (adjusted p value = 0.028); this association was present even for patients with wild-type ITPA and low ITPA activity. These preliminary results indicate that genotyping of ATIC rs2372536 and ITPA rs1127354 variants or measuring ITPA activity could be useful to predict methotrexate response in children with JIA after validation by further prospective studies on a larger patient cohort.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Artrite Juvenil/genética , Hidroximetil e Formil Transferases/genética , Metotrexato/uso terapêutico , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Pirofosfatases/genética , Adolescente , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Farmacogenética , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
3.
EBioMedicine ; 46: 79-93, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31303496

RESUMO

BACKGROUND: Metastatic colorectal cancer (CRC) remains a deadly disease. Identifying locally advanced CRC patients with high risk of developing metastasis and improving outcome of metastatic CRC patients require discovering master regulators of metastasis. In this context, the non-coding part of the human genome is still largely unexplored. METHODS: To interrogate the non-coding part of the human genome and disclose regulators of CRC metastasis, we combined a transposon-based forward genetic screen with a novel in vitro assay, which forces cells to grow deprived of cell-substrate and cell-cell contacts (i.e. forced single cell suspension assay - fSCS). FINDINGS: We proved that fSCS selects CRC cells with mesenchymal and pro-metastatic traits. Moreover, we found that the transposon insertions conferred CRC cells resistance to fSCS and thus metastatic advantage. Among the retrieved transposon insertions, we demonstrated that the one located in the 3'UTR of BTBD7 disrupts miR-23b::BTBD7 interaction and contributes to pro-metastatic traits. In addition, miR-23b and BTBD7 correlate with CRC metastasis both in preclinical experiments and in clinical samples. INTERPRETATION: fSCS is a simple and scalable in vitro assay to investigate pro-metastatic traits and transposon-based genetic screens can interrogate the non-coding part of the human genome (e.g. miRNA::target interactions). Finally, both Btbd7 and miR-23b represent promising prognostic biomarkers and therapeutic targets in CRC. FUND: This work was supported by Marie Curie Actions (CIG n. 303877) and Friuli Venezia Giulia region (Grant Agreement n°245574), Italian Association for Cancer Research (AIRC, MFAG n°13589), Italian Ministry of Health (GR-2010-2319387 and PE-2016-02361040) and 5x1000 to CRO Aviano.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Testes Genéticos , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias
4.
Cell Death Dis ; 7(9): e2374, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27899818

RESUMO

Rs3814113 is the single-nucleotide polymorphism (SNP) showing the strongest association with high-grade serous ovarian carcinoma (HGSOC) incidence and is located in an intergenic region about 44 kb downstream of basonuclin 2 (BNC2) gene. Lifetime number of ovulations is associated with increased risk to develop HGSOC, probably because of cell damage of extrauterine Müllerian epithelium by ovulation-induced oxidative stress. However, the impact of low-penetrance HGSOC risk alleles (e.g. rs3814113) on the damage induced by oxidative stress remains unclear. Therefore, the purpose of this study was to investigate whether rs3814113 genetic interval regulates BNC2 expression and whether BNC2 expression levels impact on cell survival after oxidative stress. To do this, we analyzed gene expression levels of BNC2 first in HGSOC data sets and then in an isogenic cell line that we engineered to carry a 5 kb deletion around rs3814113. Finally, we silenced BNC2 and measured surviving cells after hydrogen peroxide (H2O2) treatment to simulate oxidative stress after ovulation. In this paper, we describe that BNC2 expression levels are reduced in HGSOC samples compared with control samples, and that BNC2 expression levels decrease following oxidative stress and ovulation in vitro and in vivo, respectively. Moreover, deletion of 5 kb surrounding rs3814113 decreases BNC2 expression levels in an isogenic cell line, and silencing of BNC2 expression levels increases cell survival after H2O2 treatment. Altogether, our findings suggest that the intergenic region located around rs3814113 regulates BNC2 expression, which in turn affects cell survival after oxidative stress response. Indeed, HGSOC samples present lower BNC2 expression levels that probably, in the initial phases of oncogenic transformation, conferred resistance to oxidative stress and ultimately reduced the clearance of cells with oxidative-induced damages.


Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Ligação Genética , Genoma Humano , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Gradação de Tumores , Estresse Oxidativo/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa