Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(23): e202403670, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470158

RESUMO

A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of "kagome-NiAs" type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.

2.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446007

RESUMO

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

3.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904675

RESUMO

Sunflower seeds, one of the main oilseeds produced around the world, are widely used in the food industry. Mixtures of seed varieties can occur throughout the supply chain. Intermediaries and the food industry need to identify the varieties to produce high-quality products. Considering that high oleic oilseed varieties are similar, a computer-based system to classify varieties could be useful to the food industry. The objective of our study is to examine the capacity of deep learning (DL) algorithms to classify sunflower seeds. An image acquisition system, with controlled lighting and a Nikon camera in a fixed position, was constructed to take photos of 6000 seeds of six sunflower seed varieties. Images were used to create datasets for training, validation, and testing of the system. A CNN AlexNet model was implemented to perform variety classification, specifically classifying from two to six varieties. The classification model reached an accuracy value of 100% for two classes and 89.5% for the six classes. These values can be considered acceptable, because the varieties classified are very similar, and they can hardly be classified with the naked eye. This result proves that DL algorithms can be useful for classifying high oleic sunflower seeds.


Assuntos
Aprendizado Profundo , Helianthus , Algoritmos , Sementes
4.
J Am Chem Soc ; 144(48): 22178-22192, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413810

RESUMO

Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4̅3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4̅3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1-xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10-6 S cm-1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1-xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.

5.
J Am Chem Soc ; 143(3): 1386-1398, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442970

RESUMO

The piezoelectric devices widespread in society use noncentrosymmetric Pb-based oxides because of their outstanding functional properties. The highest figures of merit reported are for perovskites based on the parent Pb(Mg1/3Nb2/3)O3 (PMN), which is a relaxor: a centrosymmetric material with local symmetry breaking that enables functional properties, which resemble those of a noncentrosymmetric material. We present the Pb-free relaxor (K1/2Bi1/2)(Mg1/3Nb2/3)O3 (KBMN), where the thermal and (di)electric behavior emerges from the discrete structural roles of the s0 K+ and s2 Bi3+ cations occupying the same A site in the perovskite structure, as revealed by diffraction methods. This opens a distinctive route to Pb-free piezoelectrics based on relaxor parents, which we demonstrate in a solid solution of KBMN with the Pb-free ferroelectric (K1/2Bi1/2)TiO3, where the structure and function evolve together, revealing a morphotropic phase boundary, as seen in PMN-derived systems. The detailed multiple-length-scale understanding of the functional behavior of KBMN suggests that precise chemical manipulation of the more diverse local displacements in the Pb-free relaxor will enhance performance.

6.
J Am Chem Soc ; 143(43): 18216-18232, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677973

RESUMO

Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.

7.
J Am Chem Soc ; 143(10): 3983-3992, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33684283

RESUMO

Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm-1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V-1 s-1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.

8.
Inorg Chem ; 60(23): 18154-18167, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34751565

RESUMO

A newly reported compound, CuAgBiI5, is synthesized as powder, crystals, and thin films. The structure consists of a 3D octahedral Ag+/Bi3+ network as in spinel, but occupancy of the tetrahedral interstitials by Cu+ differs from those in spinel. The 3D octahedral network of CuAgBiI5 allows us to identify a relationship between octahedral site occupancy (composition) and octahedral motif (structure) across the whole CuI-AgI-BiI3 phase field, giving the ability to chemically control structural dimensionality. To investigate composition-structure-property relationships, we compare the basic optoelectronic properties of CuAgBiI5 with those of Cu2AgBiI6 (which has a 2D octahedral network) and reveal a surprisingly low sensitivity to the dimensionality of the octahedral network. The absorption onset of CuAgBiI5 (2.02 eV) barely changes compared with that of Cu2AgBiI6 (2.06 eV) indicating no obvious signs of an increase in charge confinement. Such behavior contrasts with that for lead halide perovskites which show clear confinement effects upon lowering dimensionality of the octahedral network from 3D to 2D. Changes in photoluminescence spectra and lifetimes between the two compounds mostly derive from the difference in extrinsic defect densities rather than intrinsic effects. While both materials show good stability, bulk CuAgBiI5 powder samples are found to be more sensitive to degradation under solar irradiation compared to Cu2AgBiI6.

9.
Angew Chem Int Ed Engl ; 60(30): 16457-16465, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33951284

RESUMO

We report the aperiodic titanate Ba10 Y6 Ti4 O27 with a room-temperature thermal conductivity that equals the lowest reported for an oxide. The structure is characterised by discontinuous occupancy modulation of each of the sites and can be considered as a quasicrystal. The resulting localisation of lattice vibrations suppresses phonon transport of heat. This new lead material for low-thermal-conductivity oxides is metastable and located within a quaternary phase field that has been previously explored. Its isolation thus requires a precisely defined synthetic protocol. The necessary narrowing of the search space for experimental investigation was achieved by evaluation of titanate crystal chemistry, prediction of unexplored structural motifs that would favour synthetically accessible new compositions, and assessment of their properties with machine-learning models.

10.
J Am Chem Soc ; 142(2): 847-856, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825213

RESUMO

Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity.

11.
Inorg Chem ; 59(17): 12545-12551, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32805995

RESUMO

The products of the solid-state reactions between potassium metal and tetracene (K:Tetracene, 1:1, 1.5:1, and 2:1) are fully structurally characterized. Synchrotron X-ray powder diffraction shows that only K2Tetracene forms under the reaction conditions studied, with unreacted tetracene always present for x < 2. Diffraction and 13C MAS NMR show that K2Tetracene has a crystal structure that is analogous to that of K2Pentacene, but with the cations ordered on two sites because of the influence of the length of the hydrocarbon on possible cation positions. K2Tetracene is a nonmagnetic insulator, thus further questioning the nature of reported superconductivity in this class of materials.

12.
J Am Chem Soc ; 141(18): 7333-7346, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30974948

RESUMO

Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+ xNi1- xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion-anion bonding with the anion redox capacity.

13.
J Org Chem ; 84(13): 8481-8486, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244161

RESUMO

6,6',13,13'-Tetrahydro-6,6'-bipentacene (HBP), the intermediate molecule connecting pentacene to previously observed peripentacene and extended pentacene oligomers through the formation of a carbon-carbon bond, is synthesized and crystallographically characterized. Heating pentacene to 300 °C under vacuum for 200 h results in pale golden crystals of HBP and amorphous material containing pentacene oligomers, offering experimental evidence that pentacene preferentially dimerizes at the 6,6'-position. Continued heating of HBP results in co-crystals of 6,13-dihydrogenated pentacene and pentacene and further amorphous pentacene oligomers. The amorphous material consists of layered carbonaceous species with a graphenic nature, as determined by Raman spectroscopy and electron microscopy, and suggests HBP as an intermediate to hydrogenated pentacene species and pentacene oligomers, such as peripentacene, of interest in organic electronics.

14.
Inorg Chem ; 57(20): 12489-12500, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256106

RESUMO

Both layered multiple-anion compounds and homologous series are of interest for their electronic properties, including the ability to tune the properties by changing the nature or number of the layers. Here we expand, using both computational and experimental techniques, a recently reported three-anion material, Bi4O4Cu1.7Se2.7Cl0.3, to the homologous series Bi2+2 nO2+2 nCu2-δSe2+ n-δXδ (X = Cl, Br), composed of parent blocks that are well-studied thermoelectric materials. All of the materials show exceptionally low thermal conductivity (0.2 W/mK and lower) parallel to the axis of pressing of the pellets, as well as narrow band gaps (as low as 0.28 eV). Changing the number of layers affects the band gap, thermal conductivity, carrier type, and presence of a phase transition. Furthermore, the way in which the different numbers of layers are accessed, by tuning the compensating Cu vacancy concentration and halide substitution, represents a novel route to homologous series. This homologous series shows tunable properties, and the route explored here could be used to build new homologous series out of known structural blocks.

15.
J Am Chem Soc ; 139(44): 15568-15571, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29037045

RESUMO

Layered two-anion compounds are of interest for their diverse electronic properties. The modular nature of their layered structures offers opportunities for the construction of complex stackings used to introduce or tune functionality, but the accessible layer combinations are limited by the crystal chemistries of the available anions. We present a layered three-anion material, Bi4O4Cu1.7Se2.7Cl0.3, which adopts a new structure type composed of alternately stacked BiOCuSe and Bi2O2Se-like units. This structure is accessed by inclusion of three chemically distinct anions, which are accommodated by aliovalently substituted Bi2O2Se0.7Cl0.3 blocks coupled to Cu-deficient Bi2O2Cu1.7Se2 blocks, producing a formal charge modulation along the stacking direction. The hypothetical parent phase Bi4O4Cu2Se3 is unstable with respect to its charge-neutral stoichiometric building blocks. The complex layer stacking confers excellent thermal properties upon Bi4O4Cu1.7Se2.7Cl0.3: a room-temperature thermal conductivity (κ) of 0.4(1) W/mK was measured on a pellet with preferred crystallite orientation along the stacking axis, with perpendicular measurement indicating it is also highly anisotropic. This κ value lies in the ultralow regime and is smaller than those of both BiOCuSe and Bi2O2Se. Bi4O4Cu1.7Se2.7Cl0.3 behaves like a charge-balanced semiconductor with a narrow band gap. The chemical diversity offered by the additional anion allows the integration of two common structural units in a single phase by the simultaneous and coupled creation of charge-balancing defects in each of the units.

16.
J Am Chem Soc ; 139(4): 1520-1531, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013545

RESUMO

The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d5 cations above room temperature in the AFeO3 system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3-type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A3+/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.

17.
Chem Mater ; 36(9): 4530-4541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764755

RESUMO

Mixed anion halide-chalcogenide materials have recently attracted attention for a variety of applications, owing to their desirable optoelectronic properties. We report the synthesis of a previously unreported mixed-metal chalcohalide material, CuBiSeCl2 (Pnma), accessed through a simple, low-temperature solid-state route. The physical structure is characterized through single-crystal X-ray diffraction and reveals significant Cu displacement within the CuSe2Cl4 octahedra. The electronic structure of CuBiSeCl2 is investigated computationally, which indicates highly anisotropic charge carrier effective masses, and by experimental verification using X-ray photoelectron spectroscopy, which reveals a valence band dominated by Cu orbitals. The band gap is measured to be 1.33(2) eV, a suitable value for solar absorption applications. The electronic and thermal properties, including resistivity, Seebeck coefficient, thermal conductivity, and heat capacity, are also measured, and it is found that CuBiSeCl2 exhibits a low room temperature thermal conductivity of 0.27(4) W K-1 m-1, realized through modifications to the phonon landscape through increased bonding anisotropy.

18.
Science ; 383(6684): 739-745, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359130

RESUMO

Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.

19.
Nano Lett ; 11(11): 4964-70, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21961554

RESUMO

We demonstrate that it is possible to convert CdSe nanocrystals of a given size, shape (either spherical or rod shaped), and crystal structure (either hexagonal wurtzite, i.e., hexagonal close packed (hcp), or cubic sphalerite, i.e., face-centered cubic (fcc)), into ZnSe nanocrystals that preserve all these characteristics of the starting particles (i.e., size, shape, and crystal structure), via a sequence of two cation exchange reactions, namely, Cd(2+) ⇒Cu(+) ⇒Zn(2+). When starting from hexagonal wurtzite CdSe nanocrystals, the exchange of Cd(2+) with Cu(+) yields Cu(2)Se nanocrystals in a metastable hexagonal phase, of which we could follow the transformation to the more stable fcc phase for a single nanorod, under the electron microscope. Remarkably, these metastable hcp Cu(2)Se nanocrystals can be converted in solution into ZnSe nanocrystals, which yields ZnSe nanocrystals in a pure hcp phase.


Assuntos
Compostos de Cádmio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Selênio/química , Cátions , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase
20.
ACS Org Inorg Au ; 2(5): 405-414, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217344

RESUMO

The mixed anion material Bi4O4SeCl2 has an ultralow thermal conductivity of 0.1 W m-1 K-1 along its stacking axis (c axis) at room temperature, which makes it an ideal candidate for electronic band structure optimization via doping to improve its thermoelectric performance. Here, we design and realize an optimal doping strategy for Bi4O4SeCl2 from first principles and predict an enhancement in the density of states at the Fermi level of the material upon Sn and Ge doping. Experimental work realizes the as-predicted behavior in Bi4-x Sn x O4SeCl2 (x = 0.01) through the precise control of composition. Careful consideration of multiple accessible dopant sites and charge states allows for the effective computational screening of dopants for thermoelectric properties in Bi4O4SeCl2 and may be a suitable route for assessing other candidate materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa