Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 51(2): 735-745, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013978

RESUMO

Senescence of the immune system is characterized by a state of chronic, subclinical, low-grade inflammation termed 'inflammaging', with increased levels of proinflammatory cytokines, both at the tissue and systemic levels. Age-related inflammation can be mainly driven by self-molecules with immunostimulant properties, named Damage/death Associated Molecular Patterns (DAMPs), released by dead, dying, injured cells or aged cells. Mitochondria are an important source of DAMPs, including mitochondrial DNA - the small, circular, double-stranded DNA molecule found in multiple copies in the organelle. mtDNA can be sensed by at least three molecules: the Toll-like receptor 9, the NLRP3 inflammasomes, and the cyclic GMP-AMP synthase (cGAS). All these sensors can lead to the release of proinflammatory cytokines when engaged. The release of mtDNA by damaged or necrotic cells has been observed in several pathological conditions, often aggravating the course of the disease. Several lines of evidence indicate that the impairment of mtDNA quality control and of the organelle homeostasis associated with aging determines an increase in the leakage of mtDNA from the organelle to the cytosol, from the cell to the extracellular space, and into plasma. This phenomenon, mirrored by an increase in mtDNA circulating levels in elderly people, can lead to the activation of different innate immune cell types, sustaining the chronic inflammatory status that is characteristic of aging.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Idoso , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Inflamação/metabolismo , Citocinas/metabolismo , Sistema Imunitário/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233180

RESUMO

Amyotrophic lateral sclerosis is the most common form of motor neuron disease. Mutations in TARDBP, the gene encoding the RNA-binding protein TDP-43, are responsible for about 5% of familial ALS. Here we report the clinical and biological features of an ALS patients with pA382T mutation in TPD-43 protein. Disease began with right hand muscles weakness, and equally involved upper and lower motor neuron with a classic phenotype, without cognitive impairment. While a family history of neurological diseases was reported, there was no evidence of familial frontotemporal dementia. Cultured fibroblasts from the patient were characterized by profound alterations of cell proteome, which impacts particularly the mitochondrial metabolic pathways and the endoplasmic reticulum. TDP-43 levels were similar to control, healthy fibroblasts, but a higher fraction localized in mitochondria. Mitochondrial network appeared fragmented, and the organelles smaller and more spheric. In agreement with impaired proteome and morphology of mitochondria, basal cell respiration was reduced. Mitochondrial DNA levels appeared normal. However, a higher amount of mitochondrial DNA was present in the cytosol, suggesting a pronounced mitochondrial DNA misplacement which can promote a pro-inflammatory response mediating by cGAS/STING. Thus, this case report further expands the clinical and pathological phenotype of A382T mutation.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Mutação , Nucleotidiltransferases/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Nutrients ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613078

RESUMO

The prevention of cardiovascular diseases is a fundamental pillar for reducing morbidity and mortality caused by non-communicable diseases. Social determinants, such as socioeconomic status, education, neighborhood, physical environment, employment, social support networks, and access to health care, play a crucial role in influencing health outcomes and health inequities within populations. Social determinants and stress in women are interconnected factors that can significantly impact women's health and well-being. Pregnancy is a good time to engage young women and introduce them to beneficial behaviors, such as adopting essential life skills, especially diet, and learning stress management techniques. Stress influences diet, and women are more likely to engage in unhealthy eating behaviors such as emotional eating or coping with stress with food. Strong action is needed to improve women's lifestyle starting at a young age considering that this lays the foundation for a lower cardiovascular risk in adults and the elderly. The objective of this review is to examine cardiovascular primary prevention in young healthy women, focusing particularly on unresolved issues and the influence of social determinants, as well as the correlation with stressors and their influence on diet.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Adulto , Idoso , Gravidez , Feminino , Humanos , Determinantes Sociais da Saúde , Dieta , Doenças Cardiovasculares/prevenção & controle , Alimentos
4.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786058

RESUMO

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Assuntos
Colágeno , Polpa Dentária , Fibroblastos , Inflamassomos , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Colágeno/metabolismo , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Derme/citologia , Derme/metabolismo , Interleucina-1beta/metabolismo
5.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978846

RESUMO

The mitochondrial protease Lonp1 is a multifunctional enzyme that regulates crucial mitochondrial functions, including the degradation of oxidized proteins, folding of imported proteins and maintenance the correct number of copies of mitochondrial DNA. A series of recent studies has put Lonp1 at the center of the stage in the homeostasis of cardiomyocytes and muscle skeletal cells. During heart development, Lonp1 allows the metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation. Knock out of Lonp1 arrests heart development and determines cardiomyocyte apoptosis. In adults, Lonp1 acts as a cardioprotective protein, as its upregulation mitigates cardiac injury by preventing the oxidative damage of proteins and lipids, and by preserving mitochondrial redox balance. In skeletal muscle, Lonp1 is crucial for cell development, as it mediates the activation of PINK1/Parkin pathway needed for proper myoblast differentiation. Skeletal muscle-specific ablation of Lonp1 in mice causes reduced muscle fiber size and strength due to the accumulation of mitochondrial-retained protein in muscle. Lonp1 expression and activity decline with age in different tissues, including skeletal muscle, and are associated with a functional decline and structural impairment of muscle fibers. Aerobic exercise increases unfolded protein response markers including Lonp1 in the skeletal muscle of aged animals and is associated with muscle functional recovery. Finally, mutations of Lonp1 cause a syndrome named CODAS (Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies) characterized by the impaired development of multiple organs and tissues, including myocytes. CODAS patients show hypotonia and ptosis, indicative of skeletal muscle reduced performance. Overall, this body of observations points Lonp1 as a crucial regulator of mitochondrial functions in the heart and in skeletal muscle.

6.
Nutrients ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571236

RESUMO

This literature review aims to explore the data of articles published on the association between coffee, caffeine and atrial fibrillation and to analyze any differences between the two sexes. Several factors influence this complex relationship; genetic, environmental and psychosocial factors come into play in the pathophysiology of atrial fibrillation. These factors are expressed differently in women and men. However, the analysis of the literature has shown that comparison works between the two sexes are extremely rare. Most population-based and prospective studies either analyze aggregated data or focus on exclusively male or female populations. This results in a lack of information that could be useful in the prevention of and treatment approach to atrial fibrillation. It is necessary to deepen this issue with dedicated studies.

7.
J Clin Med ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614882

RESUMO

Physical activity and diet are essential for maintaining good health and preventing the development of non-communicable diseases, especially in the older adults. One aspect that is often over-looked is the different response between men and women to exercise and nutrients. The body's response to exercise and to different nutrients as well as the choice of foods is different in the two sexes and is strongly influenced by the different hormonal ages in women. The present narrative review analyzes the effects of gender on nutrition and physical activity in older women. Understanding which components of diet and physical activity affect the health status of older women would help target non-pharmacological but lifestyle-related therapeutic interventions. It is interesting to note that this analysis shows a lack of studies dedicated to older women and a lack of studies dedicated to the interactions between diet and physical activity in women. Gender medicine is a current need that still finds little evidence.

8.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497197

RESUMO

Lonp1 is a mitochondrial protease that degrades oxidized and damaged proteins, assists protein folding, and contributes to the maintenance of mitochondrial DNA. A higher expression of LonP1 has been associated with higher tumour aggressiveness. Besides the full-length isoform (ISO1), we identified two other isoforms of Lonp1 in humans, resulting from alternative splicing: Isoform-2 (ISO2) lacking aa 42-105 and isoform-3 (ISO3) lacking aa 1-196. An inspection of the public database TSVdb showed that ISO1 was upregulated in lung, bladder, prostate, and breast cancer, ISO2 in all the cancers analysed (including rectum, colon, cervical, bladder, prostate, breast, head, and neck), ISO3 did not show significant changes between cancer and normal tissue. We overexpressed ISO1, ISO2, and ISO3 in SW620 cells and found that the ISO1 isoform was exclusively mitochondrial, ISO2 was present in the organelle and in the cytoplasm, and ISO3 was exclusively cytoplasmatic. The overexpression of ISO1 and, at a letter extent, of ISO2 enhanced basal, ATP-linked, and maximal respiration without altering the mitochondria number or network, mtDNA amount. or mitochondrial dynamics. A higher extracellular acidification rate was observed in ISO1 and ISO2, overexpressing cells, suggesting an increase in glycolysis. Cells overexpressing the different isoforms did not show a difference in the proliferation rate but showed a great increase in anchorage-independent growth. ISO1 and ISO2, but not ISO3, determined an upregulation of EMT-related proteins, which appeared unrelated to higher mitochondrial ROS production, nor due to the activation of the MEK ERK pathway, but rather to global metabolic reprogramming of cells.


Assuntos
Proteases Dependentes de ATP , Proteínas Mitocondriais , Neoplasias , Humanos , Processamento Alternativo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Glicólise , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo
9.
Front Cardiovasc Med ; 9: 905790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757346

RESUMO

Objectives: The study aimed to investigate changes in heart rate, blood pressure, respiratory rate, oxygen saturation, and body temperature in non-professional trained runners during whole body cryotherapy (WBC). Methods: Ten middle-distance runners received 3 once-a-day sessions of WBC. Subjects underwent BP measurements and ECG recorded before and immediately after the daily WBC session. During WBC we recorded a single lead trace (D1) for heart rhythm control. In addition, the 5 vital signs Blood pressure, heart rate, respiratory rate, oxygen saturation, and body temperature were monitored before, during, and after all WBC session. Results: We did not report significant changes in ECG main intervals (PR, QT, and QTc). Mean heart rate changed from 50.98 ± 4.43 bpm (before) to 56.83 ± 4.26 bpm after WBC session (p < 0.05). The mean systolic blood pressure did not change significantly during and after WBC [b baseline: 118 ± 5 mmHg, changed to 120 ± 3 mmHg during WBC, and to 121 ± 2 mmHg after session (p < 0.05 vs. baseline)]. Mean respiratory rate did not change during WBC as well as oxygen saturations (98 vs. 99%). Body temperature was slightly increased after WBC, however it remains within physiological values. Conclusion: In non-professional athletes WBC did not affect cardiovascular response and can be safely used. However, further studies are required to confirm these promising results of safety in elderly non-athlete subjects.

10.
Sci Rep ; 12(1): 10877, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760833

RESUMO

The coordinated communication between the mitochondria and nucleus is essential for cellular activities. Nonetheless, the pathways involved in this crosstalk are scarcely understood. The protease Lonp1 was previously believed to be exclusively located in the mitochondria, with an important role in mitochondrial morphology, mtDNA maintenance, and cellular metabolism, in both normal and neoplastic cells. However, we recently detected Lonp1 in the nuclear, where as much as 22% of all cellular Lonp1 can be found. Nuclear localization is detectable under all conditions, but the amount is dependent on a response to heat shock (HS). Lonp1 in the nucleus interacts with heat shock factor 1 (HSF1) and modulates the HS response. These findings reveal a novel extramitochondrial function for Lonp1 in response to stress.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteases Dependentes de ATP/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
11.
Nutrients ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565895

RESUMO

Energy drinks (EDs) are non-alcoholic beverages containing high amounts of caffeine and other psychoactive substances. EDs also contain herbal extract whose concentration is usually unknown. EDs can have several adverse effects on different organs and systems, but their effects on the gastrointestinal (GI) tract have been poorly investigated. To determine the acute effects of EDs on the GI tract, we administered EDs, coffee, soda cola, or water to Sprague-Dawley rats (n = 7 per group, randomly assigned) for up to five days, and analyzed the histopathological changes in the GI tract. Data were compared among groups by Kruskal-Wallis or Mann-Whitney tests. We found that, while EDs did not cause any evident acute lesion to the GI tract, they triggered eosinophilic infiltration in the intestinal mucosa; treatment with caffeine alone at the same doses found in EDs leads to the same effects, suggesting that it is caffeine and not other substances present in the EDs that causes this infiltration. The interruption of caffeine administration leads to the complete resolution of eosinophilic infiltration. As no systemic changes in pro-inflammatory or immunomodulating molecules were observed, our data suggest that caffeine present in ED can cause a local, transient inflammatory status that recruits eosinophils.


Assuntos
Bebidas Energéticas , Animais , Cafeína/efeitos adversos , Café , Bebidas Energéticas/efeitos adversos , Trato Gastrointestinal , Ratos , Ratos Sprague-Dawley
12.
BMC Sports Sci Med Rehabil ; 14(1): 185, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284345

RESUMO

Whole-body cryotherapy (WBC) consists of short exposure (up to 2-3 min) to dry air at cryogenic temperatures (up to -190 °C) and has recently been applied for muscle recovery after injury to reduce the inflammation process. We aimed to determine the impact of cryotherapy on immunological, hormonal, and metabolic responses in non-professional soccer players (NPSPs). Nine male NPSPs (age: 20 ± 2 years) who trained regularly over 5 consecutive days, immediately before and after each training session, were subjected to WBC treatment (WBC-t). Blood samples were collected for the evaluation of fifty analytes including hematologic parameters, serum chemistry, and hormone profiles. Monocytes phenotyping (Mo) was performed and plasmatic markers, usually increased during inflammation [CCL2, IL-18, free mitochondrial (mt)DNA] or with anti-inflammatory effects (IL2RA, IL1RN), were quantified. After WBC-t, we observed reduced levels of ferritin, mean corpuscular hemoglobin, mean platelet volume, testosterone, and estradiol, which however remain within the normal ranges. The percentage of the total, intermediates and non-classical Mo increased, while classical Mo decreased. CXCR4 expression decreased in each Mo subset. Plasma IL18 and IL2RA levels decreased, while IL1RN only exhibited a tendency to decrease and CCL2 showed a tendency to increase. Circulating mtDNA levels were not altered following WBC-t. The differences observed in monocyte subsets after WBC-t may be attributable to their redistribution into the surrounding tissue. Moreover, the decrease of CXCR4 in Mo subpopulations could be coherent with their differentiation process. Thus, WBC through yet unknown mechanisms could promote their differentiation having a role in tissue repair.

13.
Antioxidants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067882

RESUMO

Mitochondrial dysfunction is a hallmark of aging. Dysfunctional mitochondria are recognized and degraded by a selective type of macroautophagy, named mitophagy. One of the main factors contributing to aging is oxidative stress, and one of the early responses to excessive reactive oxygen species (ROS) production is the induction of mitophagy to remove damaged mitochondria. However, mitochondrial damage caused at least in part by chronic oxidative stress can accumulate, and autophagic and mitophagic pathways can become overwhelmed. The imbalance of the delicate equilibrium among mitophagy, ROS production and mitochondrial damage can start, drive, or accelerate the aging process, either in physiological aging, or in pathological age-related conditions, such as Alzheimer's and Parkinson's diseases. It remains to be determined which is the prime mover of this imbalance, i.e., whether it is the mitochondrial damage caused by ROS that initiates the dysregulation of mitophagy, thus activating a vicious circle that leads to the reduced ability to remove damaged mitochondria, or an alteration in the regulation of mitophagy leading to the excessive production of ROS by damaged mitochondria.

14.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831121

RESUMO

Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.


Assuntos
DNA Mitocondrial/genética , Inflamação/genética , Evolução Biológica , Líquidos Corporais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamassomos/metabolismo
15.
Cells ; 10(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685555

RESUMO

Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation.


Assuntos
Traumatismos em Atletas/genética , DNA Mitocondrial/genética , Exercício Físico/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa