Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 144(10): 3357-3363, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30977473

RESUMO

A new green method was developed for the quantification of paraquat (PQ) in water samples based on the fluorescence emission enhancement of the herbicide signal after adsorption on sodium montmorillonite clay (MMT). Radiant emission processes are favored by increasing the molecular rigidity of the PQ since it adopts a planar position between the nano-sheets of the MMT. The advantages of the use of this clay are nontoxic, low cost and found in abundance in natural reserves. The proposed method was successfully used in determining PQ in natural water samples with recoveries of 73% to 95%. The fluorescence emission showed a good linear relationship with PQ concentrations from 2.0 to 8.0 µmol L-1 with a detection limit of 0.37 µmol L-1. The method is simple, inexpensive and does not require the use of reagents or organic solvents; which makes it very promising to achieve the goals of green chemistry. The proposed methodology could be the beginning of the development of future green sensors.

2.
Int J Biol Macromol ; 281(Pt 4): 136515, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39406329

RESUMO

Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10-12 to 1 × 10-10 m2 s-1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel.

3.
J Environ Manage ; 128: 100-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722179

RESUMO

The biocide benzalkonium chloride (BAC) is a mix of cationic alkylbenzyldimethylammonium surfactants having different alkyl chain lengths. A comparative study of adsorption on the phyllosilicate clay montmorillonite of two of these surfactants, with alkyl chains having respectively 12 C atoms (BAC-12) and 14 C atoms (BAC-14), and a mixture of both surfactants is presented in this work. Adsorption isotherms were performed for individual surfactants and for a 1:1 mixture BAC-12+BAC-14. The adsorption was investigated in an ample concentration range that covers almost seven orders of magnitude in concentrations (from 1 nM to 10 mM), range that includes environmentally relevant concentrations. Quantification of BAC was performed by HPLC-UV and LC-MS and the results were completed with powder X-Ray diffraction. The adsorption of both surfactants leads to adsorption isotherms with two well differentiated steps. The first step corresponds almost exclusively to a cation exchange process, and the binding constant is very similar for both surfactants. The second step of the isotherms is observed at higher concentrations and adsorption is mainly driven by lateral interactions between surfactant molecules. The binding constant of this step is larger for BAC-14 than for BAC-12. Adsorption from a BAC-12+BAC-14 mixture shows a synergistic behaviour, possibly due to a better packing arrangement in the interlayer. Calculations show that in natural systems silicate clays are major sorbents of BAC at low concentrations whereas binding to humic acid is predominant at high concentrations.


Assuntos
Bentonita/química , Compostos de Benzalcônio/química , Desinfetantes/química , Adsorção , Cromatografia Líquida de Alta Pressão , Substâncias Húmicas , Solo , Relação Estrutura-Atividade , Tensoativos/química , Difração de Raios X
4.
RSC Adv ; 12(54): 35469-35476, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540257

RESUMO

Adsorption of a cationic surfactant allowed to probe the surface reactivity of montmorillonite encapsulated in a composite of alginate hydrogels (A-MMT). Dodecylbenzyldimethylammonium chloride (BAC-12) was the surfactant used for these studies. BAC-12 is part of the widely used surfactant mixture known as benzalkonium chloride. XRD showed that up to three different types of basal spacing (d 001) were present within the composite indicating that as the concentration of adsorbed BAC-12 increases, populations with different adsorption conformational arrangements are present, even unexpanded clay remains. From the SEM-EDS spectra it is observed that the clay is distributed in the whole composite. In addition, the effect of the presence of cationic and anionic biocides on BAC-12 adsorption was studied. Cationic biocides such as tetradecyllbenzyldimethylammonium chlorides (BAC-14) and paraquat (PQ) show a competitive behavior for the clay adsorption sites at BAC-12 low concentration indicating an electrostatic adsorption mechanism. However, the presence of anionic contaminants such as 2,4-D and metsulfuron methyl do not affect surfactant adsorption. In all scenarios is observed an abrupt increase of BAC-12 adsorbed amount reaching values higher than the clay CEC suggesting strong tail-tail interactions. This occurs at concentrations 10 times lower than the CMC of BAC-12 promoted by clay encapsulation in the composite. In these composites the alginate does not affect the surface reactivity of the clay, but the formation of the hydrogel allows it to be easily extracted from aqueous media which makes it an interesting material with a potential use in water remediation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29567523

RESUMO

Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH5.5 at a surface coverage of 2.0µmolm-2, with a mononuclear monoprotonated species predominating at pH>5.5 and a mononuclear diprotonated species prevailing at pH<5.5. On the contrary, at the low surface coverage of 0.7µmolm-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.

6.
Chemosphere ; 63(3): 430-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16307779

RESUMO

The binding between an oxazine dye and a humic acid was studied in aqueous solutions in the pH range 4-10 and in the supporting electrolyte (KCl) range 0.001-0.1M. A rather simple spectrophotometric method was developed to construct binding isotherms under conditions were traditional centrifugation or filtration methods fail. The use of this method is possible because humic acid molecules have the ability of changing the spectrum of dye molecules, and this ability is used to quantify the isotherms. All binding isotherms have a Langmuirian shape. The amount of bound dye is strongly dependent on the ionic strength and less dependent on the pH of the solution. The binding is rather strong and mainly driven by non-electrostatic forces. Whereas the Langmuir binding constant is independent of the pH and electrolyte concentration, the number of assessable sites in humic acid for binding oxazine increases by increasing pH and decreasing electrolyte concentration. These results can be directly related to the flexibility of humic acid molecules, which can swell at high pH and low ionic strength, increasing consequently the availability of binding sites. The results also indicate that humic substances may strongly affect the mobility and fate of dyes and related pollutants in the environment.


Assuntos
Corantes/química , Substâncias Húmicas , Oxazinas/química , Eletrólitos , Poluentes Ambientais , Concentração de Íons de Hidrogênio , Cloreto de Potássio/química , Espectrofotometria Ultravioleta
7.
Chemosphere ; 145: 34-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657085

RESUMO

The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters.


Assuntos
Poluentes Ambientais/química , Glicina/análogos & derivados , Herbicidas/química , Substâncias Húmicas , Compostos de Ferro/química , Minerais/química , Adsorção , Glicina/química , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Glifosato
8.
J Colloid Interface Sci ; 394: 485-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23374437

RESUMO

The desorption of glyphosate from goethite as induced by the adsorption of phosphate was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in combination with adsorption isotherms. Desorption of glyphosate was very low in the absence of phosphate. Addition of phosphate promoted glyphosate desorption. At low initial surface coverages, added phosphate adsorbed on free surface sites, mainly, displacing a small amount of glyphosate. At high initial surface coverages, on the contrary, phosphate adsorption resulted in a significant glyphosate desorption. In the latter conditions, the ratio desorbed glyphosate to adsorbed phosphate was 0.60. The desorption process can be explained by assuming that phosphate adsorbs first forming a monodentate mononuclear complex, which rapidly evolves into a bidentate binuclear complex that displaces glyphosate.


Assuntos
Glicina/análogos & derivados , Herbicidas/isolamento & purificação , Compostos de Ferro/química , Minerais/química , Fosfatos/isolamento & purificação , Adsorção , Glicina/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Glifosato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa