Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Int J Food Sci Nutr ; 75(3): 293-305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225882

RESUMO

Irritable bowel syndrome (IBS) is a condition affecting the digestive system and can be triggered by several different factors, including diet. To ease symptoms of IBS, a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is often recommended. Pasta, as a staple food in the Western World, is naturally high in FODMAPs. This study investigates the impact of insoluble and soluble dietary fibre ingredients in low-FODMAPs pasta. The assessment included physicochemical, sensory, and nutritional quality. Soluble fibre strengthened gluten network, which caused a lower cooking loss and a lower release of sugars during in vitro starch digestion. Insoluble fibre interfered with the gluten network development to a higher extent causing a higher sugar release during digestion. This study reveals the most suitable fibre ingredients for the development of pasta with elevated nutritional value and sensory characteristics compared to commercial products on the market. This type of pasta has a high potential of being suitable for IBS patients.


Assuntos
Fibras na Dieta , Fermentação , Síndrome do Intestino Irritável , Valor Nutritivo , Fibras na Dieta/análise , Humanos , Síndrome do Intestino Irritável/dietoterapia , Alimentos Fortificados/análise , Monossacarídeos/análise , Polímeros , Glutens/análise , Amido , Digestão , Oligossacarídeos/análise , Culinária/métodos , Dissacarídeos/análise
2.
J Sci Food Agric ; 102(12): 4977-4987, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33280110

RESUMO

BACKGROUND: The fortification of cereal foods, like pasta, with pseudocereal and legume ingredients promises a substantial improvement of their nutritional quality. However, partial replacement of wheat by pseudocereals and legumes in pasta formulations bears challenges regarding the products' technological and sensory quality. This study investigates the partial replacement of wheat semolina by a combination of high-protein ingredients (HPIs) from buckwheat, faba bean and lupin to reach a protein level of 20% of calories provided by protein. This high-protein hybrid pasta (HPHP) formulation was subjected to a thorough evaluation of technological quality characteristics and compared to regular wheat pasta and pasta formulations containing the single HPIs. Additionally, descriptive sensory profiling was performed to compare organoleptic properties of HPHP with regular wheat pasta. RESULTS: The quality of pasta formulations containing single HPIs was significantly reduced with regard to at least one of the determined quality characteristics. For the HPHP formulation containing all three HPIs, the technological quality was found to be equal to regular wheat pasta. No significant differences were detected for the most indicative quality characteristics cooking loss, firmness and stickiness. This was attributed primarily to compensating effects of the HPIs with respect to different quality characteristics. Sensory analysis revealed only slightly inferior overall quality of HPHP in comparison to regular wheat pasta, especially promoted by similar textural properties. CONCLUSION: The combination of selected HPIs offers the opportunity to produce high-protein hybrid pasta with technological and sensory quality similar to regular wheat pasta at a level of wheat semolina replacement of 25%. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae , Triticum , Culinária , Farinha/análise , Valor Nutritivo , Triticum/química , Verduras
3.
J Sci Food Agric ; 102(12): 5086-5097, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33792053

RESUMO

BACKGROUND: Plant-based milk alternatives are becoming more popular. However, many are low in nutrients, particularly protein. More attention is being given to plant protein isolates / concentrates as potential ingredients in high-protein milk alternative formulations. RESULTS: The effect of lupin protein source on the physicochemical, functional, and nutritional characteristics of model milk alternatives was investigated. Milk alternatives were produced with either blue lupin or white lupin protein isolate, formulated to contain similar levels of protein and fat as low-fat cow's milk. Nutritional composition and predicted glycemic properties were measured. The effect of homogenization pressure on the physicochemical properties and storage stability was also assessed, with cow's milk and soy milk alternative analyzed for comparison. Both blue and white lupin milk alternatives were high in protein, low in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs), and had a low predicted glycemic index. White lupin milk alternatives had smaller particle size as well as greater stability, with less creaming compared to blue lupin milk alternatives, although the former showed slightly higher sediment layers. Increasing homogenization pressure from 180 to 780 bar resulted in smaller particle size, lower separation rate, and greater foamability for both blue and white lupin milk alternatives. White lupin milk alternative homogenized at 780 bar was found to be the most stable product, with a similar separation rate to cow's milk. CONCLUSIONS: These results indicate that protein source and processing can influence functional properties significantly along with product stability, and this is an important consideration when formulating high-protein milk alternatives. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Lupinus , Hipersensibilidade a Leite , Substitutos do Leite , Leite de Soja , Animais , Bovinos , Emulsões/análise , Feminino , Leite/química , Substitutos do Leite/química
4.
J Sci Food Agric ; 102(12): 5055-5064, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33709392

RESUMO

BACKGROUND: The increasing importance of plant-based proteins in the food sector makes a reliable compositional analysis of plant-based high-protein ingredients a necessity. Specifically, the quantification of short-chain carbohydrates is relevant for multiple areas, including food product development, food labelling and fundamental food chemistry and food technology research. Commonly used extraction procedures for subsequent high-performance liquid chromatographic separation and quantification of short-chain carbohydrates have been discussed controversially regarding a range of complications that can potentially lead to inaccurate sugar determination. The present study compares the sugar levels in wheat flour and wholemeal wheat flour determined with different aqueous and ethanolic extraction procedures. These procedures included measures to prevent enzyme activity and microbial growth, which represent two of the most relevant challenges in sugar extraction from food samples. RESULTS: Differences in sugar levels (sum of sucrose/maltose, glucose and fructose) as high as 1.8% dry matter (wheat flour) were observed between the employed extraction procedures. Ethanolic extraction (80% ethanol in ultrapure water) with the use of the antimicrobial agent sodium azide but without Carrez clarification was identified as most promising for sugar determination in plant-based high-protein ingredients. CONCLUSION: A screening of high-protein ingredients derived from cereals (wheat gluten), pseudocereals (quinoa, amaranth, buckwheat) and legumes (soy, pea, lupin, lentil, carob, chickpea, faba bean) concerning their levels of sucrose, maltose, glucose and fructose confirmed the applicability of the chosen extraction procedure. © 2021 Society of Chemical Industry.


Assuntos
Farinha , Lupinus , Carboidratos/análise , Cromatografia Líquida de Alta Pressão/métodos , Etanol , Farinha/análise , Frutose/análise , Glucose/análise , Lupinus/metabolismo , Maltose , Proteínas de Plantas/metabolismo , Sacarose/análise , Açúcares , Triticum/metabolismo
5.
J Sci Food Agric ; 102(12): 5000-5010, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33314156

RESUMO

BACKGROUND: The fortification of wheat-based staple foods, such as pasta, with pseudocereal and legume flours has received growing research interest in recent years. While it is associated with many challenges regarding technological and sensory quality of the products, it promises a substantial improvement of the nutritional value of pasta. However, investigations of the nutritional quality of fortified pasta often focus on the carbohydrate/starch fraction, and information on changes in protein quality is relatively scarce. This study evaluates the nutritional profile of a high-protein hybrid pasta (HPHP) formulation in which a combination of three high-protein ingredients (HPIs) from buckwheat, faba bean and lupin is used to partially replace wheat semolina. The formulation's macronutrient composition, protein quality and the content of antinutritional compounds are assessed in comparison to regular wheat pasta. RESULTS: The HPHP formulation represents a more favourable macronutrient profile compared to regular wheat pasta, particularly in relation to the isocaloric replacement of wheat starch by non-wheat protein. Furthermore, a more balanced amino acid profile, improved N utilisation and increased protein efficiency ratio (in vivo) were determined for HPHP, which conclusively suggests a substantially enhanced protein quality. The cooking process was shown to significantly reduce levels of vicine/convicine and trypsin inhibitor activity originating from HPIs. The small remaining levels seem not to adversely affect HPHP's nutritional quality. CONCLUSION: This significant upgrade of pasta's nutritional value identifies HPHP, and similar hybrid formulations, as a healthy food choice and valuable alternative to regular wheat pasta, specifically for a protein supply of adequate quality in mostly plant-based diets. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae , Culinária , Fabaceae/química , Farinha/análise , Valor Nutritivo , Amido , Verduras
6.
J Sci Food Agric ; 102(12): 5077-5085, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33745134

RESUMO

BACKGROUND: The amino acid composition, and rheological, thermal and colloidal stability of plant protein-based oil-in-water emulsion systems containing 1.90, 3.50 and 7.70 g 100 mL-1 protein, fat and carbohydrate, respectively, using quinoa and lentil protein ratios of 100:0 and 60:40 were investigated. The emulsion containing lentil protein showed lower initial, peak and final viscosity values (22.7, 61.7 and 61.6 mPa s, respectively) than the emulsion formulated with quinoa protein alone (34.3, 102 and 80.0 mPa s, respectively) on heat treatment. RESULTS: Particle size analysis showed that both samples had small particle sizes (~1.36 µm) after homogenization; however, the sample with 60:40 quinoa:lentil protein ratio showed greater physical stability, likely related to the superior emulsifying properties of lentil protein. However, upon heat treatment, large aggregates (~100 µm) were formed in both samples, reducing the physical stability of the samples. This physical stability was increased with the addition of 0.20% sodium dodecyl sulfate (SDS), whereas it was negatively affected by the addition of α-amylase. Addition of α-amylase led to lower viscosity for both emulsion samples, with measured values of 41.8 and 46.0 mPa s for the 100:0 and 60:40 samples, respectively. This suggests that the heat-induced increases in particle size were partially due to hydrophobic interactions between the proteins as SDS disrupts hydrophobic bonds between proteins. CONCLUSION: These results demonstrated that using a mixture of lentil and quinoa proteins positively affected the physical stability of plant protein-based emulsions, in addition to contributing to a more nutritionally complete amino acid profile - both important considerations in the development of plant-based beverages. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Lens (Planta) , Aminoácidos , Emulsões/química , Lens (Planta)/química , Tamanho da Partícula , Proteínas de Plantas/química , Água/química , alfa-Amilases
7.
J Sci Food Agric ; 102(12): 5098-5110, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231208

RESUMO

BACKGROUND: In the European Union proteins for food are largely animal based, consisting of meat and dairy products. Almost all soy but also a larger part of pulses and cereals consumed in the European Union are used for animal nutrition. While livestock is an important source of proteins, it also creates substantial environmental impacts. The food and feed system is closely linked to the planetary and health boundaries and a transformation to healthy diets will require substantial dietary shifts towards healthy foods, such as nuts, fruits, vegetables and legumes. RESULTS: Extrudated vegetable meat alternatives consisting of protein combined with amaranth or buckwheat flour and a vegetable milk alternative made from lentil proteins were shown to have the potential to generate significantly less environmental impact than their animal-based counterparts in most of the environmental indicators examined, taking into account both functional units (mass and protein content). The underlying field-to-fork life cycle assessment models include several variants for both plant and animal foods. The optimized plant-based foods show a clear potential for improvement in the environmental footprints. CONCLUSIONS: Development of higher processed and therefore higher performing products is crucial for appealing to potential user groups beyond dedicated vegetarians and vegans and ultimately achieving market expansion. The Protein2Food project showed that prototypes made from European-grown legumes and pseudocereals are a valuable source for high-quality protein foods, and despite being substantially processed they could help reduce the environmental impact of food consumption. © 2021 Society of Chemical Industry.


Assuntos
Dieta , Proteínas de Plantas , Ração Animal , Animais , Laticínios , Estágios do Ciclo de Vida , Carne , Verduras
8.
J Sci Food Agric ; 102(12): 5044-5054, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33682129

RESUMO

BACKGROUND: Infant formula is a human milk substitute for consumption during the first months of life. The protein component of such products is generally of dairy origin. Alternative sources of protein, such as those of plant origin, are of interest due to dairy allergies, intolerances, and ethical and environmental considerations. Lentils have high levels of protein (20-30%) with a good amino acid profile and functional properties. In this study, a model lentil protein-based formula (LF), in powder format, was produced and compared to two commercial plant-based infant formulae (i.e., soy; SF and rice; RF) in terms of physicochemical properties and digestibility. RESULTS: The macronutrient composition was similar between all the samples; however, RF and SF had larger volume-weighted mean particle diameters (D[4,3] of 121-134 µm) than LF (31.9 µm), which was confirmed using scanning electron and confocal laser microscopy. The larger particle sizes of the commercial powders were attributed to their agglomeration during the drying process. Regarding functional properties, the LF showed higher D[4,3] values (17.8 µm) after 18 h reconstitution in water, compared with the SF and RF (5.82 and 4.55 µm, respectively), which could be partially attributed to hydrophobic protein-protein interactions. Regarding viscosity at 95 °C and physical stability, LF was more stable than RF. The digestibility analysis showed LF to have similar values (P < 0.05) to the standard SF. CONCLUSION: These results demonstrated that, from the nutritional and physicochemical perspectives, lentil proteins represent a good alternative to other sources of plant proteins (e.g., soy and rice) in infant nutritional products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fórmulas Infantis , Lens (Planta) , Alérgenos , Dessecação , Humanos , Lactente , Fórmulas Infantis/química , Tamanho da Partícula , Pós
9.
Compr Rev Food Sci Food Saf ; 21(2): 1491-1516, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122383

RESUMO

A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is a promising therapeutic approach to reduce gastrointestinal symptoms associated with irritable bowel syndrome (IBS). However, a shift toward a more sustainable, healthy diet with higher inclusion of whole-grain cereals (i.e., wheat, rye, barley) and pulses, naturally rich in FODMAPs, poses a severe challenge for susceptible individuals. Dietary restriction of fermentable carbohydrates (commonly called the "low FODMAP diet") has received significant consideration. Hence, the development of functional low FODMAP products is emerging in food science and the food industry. In this review, we evaluate the most promising yet neglected (bio)-technological strategies adopted for modulating the FODMAP contents in complex food systems and the extent of their uptake in the global food market. We extensively investigated the global low FODMAP market, contrasted with the status quo in food science and discussed the key principles and concomitant challenges of targeted FODMAP reduction strategies. Powerful tools are available which are based either on the use of ingredients where FODMAPs have been physically removed (e.g., by membrane filtration) or biotechnologically reduced during the food processing, mediated by added enzymes, microbial enzymes during a fermentation process, and seed endogenous enzymes. However, <10% of the small market of functional products with a low FODMAP claim (total ∼800 products) used any of the targeted FODMAP reduction techniques. The global market is currently dominated by gluten-free products, which are naturally low in FODMAPs and characterized by inferior sensory attributes.


Assuntos
Síndrome do Intestino Irritável , Dieta , Dissacarídeos/uso terapêutico , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Monossacarídeos/uso terapêutico , Oligossacarídeos
10.
Compr Rev Food Sci Food Saf ; 21(3): 2930-2955, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35478262

RESUMO

Dietary fiber intakes in Western societies are concerningly low and do not reflect global recommended dietary fiber intakes for chronic disease prevention. Resistant starch (RS) is a fermentable dietary fiber that has attracted research interest. As an isolated ingredient, its fine particle size, relatively bland flavor, and white appearance may offer an appealing fiber source to the Western palate, accustomed to highly refined, processed grains. This review aims to provide a comprehensive insight into the current knowledge (classification, production methods, and characterization methods), health benefits, applications, and acceptability of RS. It further discusses the present market for commercially available RS ingredients and products containing ingredients high in RS. The literature currently highlights beneficial effects for dietary RS supplementation with respect to glucose metabolism, satiety, blood lipid profiles, and colonic health. An exploration of the market for commercial RS ingredients indicates a diverse range of products (from isolated RS2, RS3, and RS4) with numerous potential applications as partial or whole substitutes for traditional flour sources. They may increase the nutritional profile of a food product (e.g., by increasing the fiber content and lowering energy values) without significantly compromising its sensory and functional properties. Incorporating RS ingredients into staple food products (such as bread, pasta, and sweet baked goods) may thus offer an array of nutritional benefits to the consumer and a highly accessible functional ingredient to be greater exploited by the food industry.


Assuntos
Amido Resistente , Amido , Pão , Fibras na Dieta , Palato/metabolismo
11.
Compr Rev Food Sci Food Saf ; 20(4): 3858-3880, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125502

RESUMO

Plant-based yogurt alternatives are increasing in market value, while dairy yogurt sales are stagnating or even declining. The plant-based yogurt alternatives market is currently dominated by products based on coconut or soy. Coconut-based products especially are often low in protein and high in saturated fat, while soy products raise consumer concerns regarding genetically modified soybeans, and soy allergies are common. Pulses are ideally suited as a base for plant-based yogurt alternatives due to their high protein content and beneficial amino acid composition. This review provides an overview of pulse nutrients, pro-nutritional and anti-nutritional compounds, how their composition can be altered by fermentation, and the chemistry behind pulse protein coagulation by acid or salt denaturation. An extensive market review on plant-based yogurt alternatives provides an overview of the current worldwide market situation. It shows that pulses are ideal base ingredients for yogurt alternatives due to their high protein content, amino acid composition, and gelling behavior when fermented with lactic acid bacteria. Additionally, fermentation can be used to reduce anti-nutrients such as α-galactosides and vicine or trypsin inhibitors, further increasing the nutritional value of pulse-based yogurt alternatives.


Assuntos
Lactobacillales , Iogurte , Fermentação , Valor Nutritivo , Glycine max
12.
Crit Rev Food Sci Nutr ; 60(12): 2034-2051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31210053

RESUMO

Food research is constantly searching for new ways to replace sugar. This is due to the negative connotations of sugar consumption on health which has driven consumer demand for healthier products and is reflected on a national level by the taxation of sugary beverages. Sugar alcohols, a class of polyols, are present in varying levels in many fruits and vegetables and are also added to foods as low calorific sweeteners. The most commonly used polyols in food include sorbitol, mannitol, xylitol, erythritol, maltitol, lactitol and isomalt. Of these, microorganisms can produce sorbitol, mannitol, xylitol and erythritol either naturally or through genetic engineering. Production of polyols by microbes has been the focus of a lot of research for its potential as an alternative to current industrial scale production by chemical synthesis but can also be used for in situ production of natural sweeteners in fermented products using microbes approved for use in foods. This review on the generation of these natural sweetening compounds by microorganisms examines the current understanding and methods of microbial production of polyols that are applicable in the food industry. The review also considers the health benefits and effects of polyol usage and discusses regulations which are applicable to polyol use.


Assuntos
Biotecnologia/métodos , Dieta Saudável , Rotulagem de Alimentos , Tecnologia de Alimentos/legislação & jurisprudência , Tecnologia de Alimentos/métodos , Polímeros/metabolismo , Polímeros/farmacologia , Eritritol/biossíntese , Eritritol/metabolismo , Humanos , Polímeros/efeitos adversos , Xilitol/biossíntese , Xilitol/metabolismo
13.
Crit Rev Food Sci Nutr ; 59(21): 3395-3419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993266

RESUMO

Economic losses due to post-harvest fungal spoilage and mycotoxin contamination of cereal crops is a frequently encountered issue. Typically, chemical preservatives are used to reduce the initial microbial load and the environmental conditions during storage are controlled to prevent microbial growth. However, in recent years the consumers' desire for more naturally produced foods containing less chemical preservatives has grown increasingly stronger. This article reviews the latest advances in terms of novel approaches for chemical decontamination, namely application cold atmospheric pressure plasma and electrolyzed water, and their suitability for preservation of stored cereal crops. In addition, the alternative use of bio-preservatives, such as starter cultures or purified antimicrobial compounds, to prevent the growth of spoilage organisms or remove in-field accumulated mycotoxins is evaluated. All treatments assessed here show potential for inhibition of microbial spoilage. However, each method encounters draw-backs, making industrial application difficult. Even under optimized processing conditions, it is unlikely that one single treatment can reduce the natural microbial load sufficiently. It is evident that future research needs to examine the combined application of several treatments to exploit their synergistic properties. This would enable sufficient reduction in the microbial load and ensure microbiological safety of cereal crops during long-term storage.


Assuntos
Grão Comestível , Conservação de Alimentos , Micotoxinas , Contaminação de Alimentos , Conservantes de Alimentos , Fungos
14.
Compr Rev Food Sci Food Saf ; 18(3): 587-625, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336918

RESUMO

Acetic acid bacteria (AAB) have, for centuries, been important microorganisms in the production of fermented foods and beverages such as vinegar, kombucha, (water) kefir, and lambic beer. Their unique form of metabolism, known as "oxidative" fermentation, mediates the transformation of a variety of substrates into products, which are of importance in the food and beverage industry and beyond; the most well-known of which is the oxidation of ethanol into acetic acid. Here, a comprehensive review of the physiology of AAB is presented, with particular emphasis on their importance in the production of vinegar and fermented beverages. In addition, particular reference is addressed toward Gluconobacter oxydans due to its biotechnological applications, such as its role in vitamin C production. The production of vinegar and fermented beverages in which AAB play an important role is discussed, followed by an examination of the literature relating to the health benefits associated with consumption of these products. AAB hold great promise for future exploitation, both due to increased consumer demand for traditional fermented beverages such as kombucha, and for the development of new types of products. Further studies on the health benefits related to the consumption of these fermented products and guidelines on assessing the safety of AAB for use as microbial food cultures (starter cultures) are, however, necessary in order to take full advantage of this important group of microorganisms.

15.
Crit Rev Food Sci Nutr ; 58(7): 1152-1164, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27874287

RESUMO

Although bread making with the use of Baker's yeast has a long tradition in human history, little attention has been paid to the connection between yeast addition and the final bread quality. Nowadays, bakers mainly use different flour additives such as enzymes (amylases, hemicellulases, and proteases) to change and improve dough properties and/or bread quality. Another strategy is the use of modified industrial Baker's yeast. To date, there is no yeast strain used in the baking industry, which is genetically modified, despite some studies demonstrating that the application of recombinant DNA technology is a possibility for improved strains suitable for baking. However, due to the fact that the majority of consumers in Europe highly reject the use of genetically modified microorganisms in the production of food, other strategies to improve bread quality must be investigated. Such a strategy would be a reconsideration of the selection of yeast strains used for the baking process. Next to the common criteria, the requirement for adequate gas production, more attention should be paid on how yeast impacts flavor, shelf life, color, and the nutritional value of baked products, in a similar way to which yeast strains are selected in the wine and brewing industries.


Assuntos
Pão/normas , Saccharomyces cerevisiae/metabolismo , Fermentação , Engenharia Genética , Saccharomyces cerevisiae/genética , Paladar
16.
Crit Rev Food Sci Nutr ; 57(16): 3528-3542, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26980564

RESUMO

Microbial spoilage of bread and the consequent waste problem causes large economic losses for both the bakery industry and the consumer. Furthermore the presence of mycotoxins due to fungal contamination in cereals and cereal products remains a significant issue. The use of conventional chemical preservatives has several drawbacks, necessitating the development of clean-label alternatives. In this review, we describe current research aiming to extend the shelf life of bread through the use of more consumer friendly and ecologically sustainable preservation techniques as alternatives to chemical additives. Studies on the in situ-production/-expression of antifungal compounds are presented, with special attention given to recent developments over the past decade. Sourdough fermented with antifungal strains of lactic acid bacteria (LAB) is an area of increasing focus and serves as a high-potential biological ingredient to produce gluten-containing and gluten-free breads with improved nutritional value, quality and safety due to shelf-life extension, and is in-line with consumer's demands for more products containing less additives. Other alternative biopreservation techniques include the utilization of antifungal peptides, ethanol and plant extracts. These can be added to bread formulations or incorporated in antimicrobial films for active packaging (AP) of bread. This review outlines recent progress that has been made in the area of bread biopreservation and future perspectives in this important area.


Assuntos
Pão/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Conservantes de Alimentos/análise , Armazenamento de Alimentos/métodos , Fermentação , Contaminação de Alimentos/análise , Fungos , Fatores de Tempo
18.
Plant Foods Hum Nutr ; 72(1): 26-33, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27817089

RESUMO

The market for plant-based dairy-type products is growing as consumers replace bovine milk in their diet, for medical reasons or as a lifestyle choice. A screening of 17 different commercial plant-based milk substitutes based on different cereals, nuts and legumes was performed, including the evaluation of physicochemical and glycaemic properties. Half of the analysed samples had low or no protein contents (<0.5 %). Only samples based on soya showed considerable high protein contents, matching the value of cow's milk (3.7 %). An in-vitro method was used to predict the glycaemic index. In general, the glycaemic index values ranged from 47 for bovine milk to 64 (almond-based) and up to 100 for rice-based samples. Most of the plant-based milk substitutes were highly unstable with separation rates up to 54.39 %/h. This study demonstrated that nutritional and physicochemical properties of plant-based milk substitutes are strongly dependent on the plant source, processing and fortification. Most products showed low nutritional qualities. Therefore, consumer awareness is important when plant-based milk substitutes are used as an alternative to cow's milk in the diet.


Assuntos
Glycine max/química , Substitutos do Leite/química , Oryza/química , Glicemia/análise , Humanos , Valor Nutritivo
19.
Crit Rev Food Sci Nutr ; 56(3): 339-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25575046

RESUMO

A growing number of consumers opt for plant-based milk substitutes for medical reasons or as a lifestyle choice. Medical reasons include lactose intolerance, with a worldwide prevalence of 75%, and cow's milk allergy. Also, in countries where mammal milk is scarce and expensive, plant milk substitutes serve as a more affordable option. However, many of these products have sensory characteristics objectionable to the mainstream western palate. Technologically, plant milk substitutes are suspensions of dissolved and disintegrated plant material in water, resembling cow's milk in appearance. They are manufactured by extracting the plant material in water, separating the liquid, and formulating the final product. Homogenization and thermal treatments are necessary to improve the suspension and microbial stabilities of commercial products that can be consumed as such or be further processed into fermented dairy-type products. The nutritional properties depend on the plant source, processing, and fortification. As some products have extremely low protein and calcium contents, consumer awareness is important when plant milk substitutes are used to replace cow's milk in the diet, e.g. in the case of dairy intolerances. If formulated into palatable and nutritionally adequate products, plant-based substitutes can offer a sustainable alternative to dairy products.


Assuntos
Produtos Fermentados do Leite , Dieta , Intolerância à Lactose , Hipersensibilidade a Leite , Substitutos do Leite/química , Animais , Humanos
20.
Appl Microbiol Biotechnol ; 100(3): 1121-1135, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621802

RESUMO

Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.


Assuntos
Lactobacillus/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fermentação , Microbiologia de Alimentos/métodos , Microbiologia de Alimentos/tendências , Lactobacillus/química , Lactobacillus/genética , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa