Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(41): 16221-16227, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194391

RESUMO

The solvent-assisted linker exchange (SALE) method was used to produce amino-functionalized yttrium-based UiO-66 [NH2UiO-66(Y)], which is not obtainable via a direct synthetic method. Remarkably, SALE not only produced relatively highly porous NH2UiO-66(Y) from completely non-porous 3,3-bpdc-Y but also changed the network topology from 8-connected bcu in 3,3-bpdc-Y to 12-connected fcu in NH2UiO-66(Y). Based on our knowledge, this is one of the rare cases where SALE changes the whole network topology of the resulting metal-organic framework. NH2UiO-66(Y) also showed promising ability for selective detection of Cu2+ at a low concentration.

2.
Angew Chem Int Ed Engl ; 60(11): 5729-5733, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33306243

RESUMO

Use of preformed metal-organic polyhedra (MOPs) as supermolecular building blocks (SBBs) for the synthesis of metal-organic frameworks (MOFs) remains underexplored due to lack of robust functionalized MOPs. Herein we report the use of polycarboxylate cuboctahedral RhII -MOPs for constructing highly-connected MOFs. Cuboctahedral MOPs were functionalized with carboxylic acid groups on their 12 vertices or 24 edges through coordinative or covalent post-synthetic routes, respectively. We then used each isolated polycarboxylate RhII -MOP as 12-c cuboctahedral or 24-c rhombicuboctahedral SBBs that, upon linkage with metallic secondary building units (SBUs), afford bimetallic highly-connected MOFs. The assembly of a pre-synthesized 12-c SBB with a 4-c paddle-wheel SBU, and a 24-c SBB with a 3-c triangular CuII SBU gave rise to bimetallic MOFs having ftw (4,12)-c or rht (3,24)-c topologies, respectively.

3.
Inorg Chem ; 59(5): 2988-2996, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32056427

RESUMO

In this context, we describe a novel method to control the dimensionality and, further, the morphology in three mixed linker metal-organic frameworks (MOFs) TMU-70, TMU-71, and TMU-49 via altering the linker shapes. The compatibility between the shape of linkers used in the mixed linker framework, specifically linker angles, can directly affect the dimensionality of the resulting networks from 2D to 3D. Using incompatible linkers (one bent and one linear) together with binodal SBU directed the structure to form 2D networks, while 3D networks were obtained through applying linkers with the same shape. Further, the 2D and 3D MOFs were fabricated through the coordination modulation strategy. The impact of various modulators on the size and morphology of the structures has been examined. The 2D MOFs produced only nanorods through application of different capping agents owing to their preferred crystal growth, while the 3D networks led to rod and plate morphologies. Also, the catalytic performance of MOFs in an aldol-type condensation reaction was estimated. High and fast catalytic activity is detected in nanoscale rod-shaped catalysts.

4.
Ultrason Sonochem ; 69: 105246, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32645665

RESUMO

A novel mixed linker Metal-organic Framework, [Co(NH2IsoBDC)(bpfn)].DMF (TMU-69), with amide and amino functionalized spacers (bpfn = N,N'-(naphthalene-1,5-diyl)diisonicotinamide, NH2IsoBDCH2 = 5-Aminoisophthalic acid) was synthesized through both solvothermal and ultrasonic approaches. Applying sonochemical irradiation led to ultrafast formation of Flower-shaped nanoplates of TMU-69 within 15 min with high yield while, solvothermal method takes 3 days to form the framework. Control of size and morphology was also enhanced through applying ultrasonic irradiations. The implication of applied time and concentration of reagents on size and morphology of nano-structured TMU-69 have been optimized. Applying higher concentration of initial material with optimized 60-minute irradiation forms uniform smaller sized nanoplates of TMU-69. Also, the efficiency of TMU-69 bulk and nanoplates toward removal of pollutant dyes from water was investigated. The selective adsorption of Congo Red was observed among other dyes. Also, drastic enhancement in removal kinetic of Congo Red through using ultrasonic assisted nanoplates of TMU-69 was obtained.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa