Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 298(7): 102085, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636511

RESUMO

Inhibition of gene expression in Caenorhabditis elegans, a versatile model organism for studying the genetics of development and aging, is achievable by feeding nematodes with bacteria expressing specific dsRNAs. Overexpression of hypoxia-inducible factor 1 (hif-1) or heat-shock factor 1 (hsf-1) by conventional transgenesis has previously been shown to promote nematodal longevity. However, it is unclear whether other methods of gene overexpression are feasible, particularly with the advent of CRISPR-based techniques. Here, we show that feeding C. elegans engineered to stably express a Cas9-derived synthetic transcription factor with bacteria expressing promoter-specific single guide RNAs (sgRNAs) also allows activation of gene expression. We demonstrate that CRISPR activation via ingested sgRNAs specific for the respective promoter regions of hif-1 or hsf-1 increases gene expression and extends lifespan of C. elegans. Furthermore, and as an in silico resource for future studies aiming to use CRISPR activation in C. elegans, we provide predicted promoter-specific sgRNA target sequences for >13,000 C. elegans genes with experimentally defined transcription start sites. We anticipate that the approach and components described herein will help to facilitate genome-wide gene overexpression studies, for example, to identify modulators of aging or other phenotypes of interest, by enabling induction of transcription by feeding of sgRNA-expressing bacteria to nematodes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ingestão de Alimentos , Longevidade/genética , Pequeno RNA não Traduzido , Sistemas CRISPR-Cas
2.
Proc Natl Acad Sci U S A ; 111(40): 14512-7, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246545

RESUMO

In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control.


Assuntos
Expressão Gênica/genética , Impressão Genômica/genética , Receptor IGF Tipo 1/deficiência , Receptor de Insulina/deficiência , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Azacitidina/farmacologia , Linhagem Celular Transformada , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Embrião de Mamíferos/citologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos Knockout , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
3.
Nat Chem Biol ; 9(11): 693-700, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077178

RESUMO

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade , Niacinamida/metabolismo , Sirtuínas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Metilação , Niacinamida/química , Sirtuínas/genética
4.
Nutrients ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571303

RESUMO

A growing body of evidence suggests that regular consumption of natural products might promote healthy aging; however, their mechanisms of action are still unclear. Rosmarinic acid (RA) is a polyphenol holding anti-inflammatory, antioxidant and neuroprotective properties. The aim of this study was to characterise the efficacy of an oral administration of RA in promoting healthspan in a mouse model of physiological aging. Aged C57Bl/6 male and female (24-month-old) mice were either administered with RA (500 mg/Kg) or a vehicle in drinking bottles for 52 days while 3-month-old mice receiving the same treatment were used as controls. All subjects were assessed for cognitive abilities in the Morris water maze (MWM) and for emotionality in the elevated-plus maze test (EPM). Brain-derived Neurotrophic Factor (BDNF) protein levels were evaluated in the hippocampus. Since the interaction between metabolic signals and cerebral functions plays a pivotal role in the etiopathogenesis of cognitive decline, the glycaemic and lipid profiles of the mice were also assessed. RA enhanced learning and memory in 24-month-old mice, an effect that was associated to improved glucose homeostasis. By contrast, the lipid profile was disrupted in young adults. This effect was associated with worse glycaemic control in males and with reduced BDNF levels in females, suggesting powerful sex-dependent effects and raising a note of caution for RA administration in young healthy adult subjects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estresse Oxidativo , Masculino , Camundongos , Feminino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Hipocampo/metabolismo , Camundongos Endogâmicos , Glucose/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Ácido Rosmarínico
5.
Nat Commun ; 14(1): 8142, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065964

RESUMO

To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.


Assuntos
Caenorhabditis elegans , Daucus carota , Humanos , Animais , Camundongos , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento , Longevidade , Poli-Inos/metabolismo , Mamíferos
6.
Cell Metab ; 6(4): 280-93, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17908557

RESUMO

Increasing cellular glucose uptake is a fundamental concept in treatment of type 2 diabetes, whereas nutritive calorie restriction increases life expectancy. We show here that increased glucose availability decreases Caenorhabditis elegans life span, while impaired glucose metabolism extends life expectancy by inducing mitochondrial respiration. The histone deacetylase Sir2.1 is found here to be dispensable for this phenotype, whereas disruption of aak-2, a homolog of AMP-dependent kinase (AMPK), abolishes extension of life span due to impaired glycolysis. Reduced glucose availability promotes formation of reactive oxygen species (ROS), induces catalase activity, and increases oxidative stress resistance and survival rates, altogether providing direct evidence for a hitherto hypothetical concept named mitochondrial hormesis or "mitohormesis." Accordingly, treatment of nematodes with different antioxidants and vitamins prevents extension of life span. In summary, these data indicate that glucose restriction promotes mitochondrial metabolism, causing increased ROS formation and cumulating in hormetic extension of life span, questioning current treatments of type 2 diabetes as well as the widespread use of antioxidant supplements.


Assuntos
Caenorhabditis elegans/metabolismo , Glucose/deficiência , Glicólise , Longevidade , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Respiração Celular , Glucose/metabolismo , Glicólise/genética , Longevidade/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Estresse Oxidativo/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
7.
J Biol Chem ; 286(25): 22323-30, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21540181

RESUMO

Cancer cells commonly exhibit increased nonoxidative D-glucose metabolism whereas induction of mitochondrial metabolism may impair malignant growth. We have first used an in silico method called elementary mode analysis to identify inhibition of ALAT (L-alanine aminotransferase) as a putative target to promote mitochondrial metabolism. We then experimentally show that two competitive inhibitors of ALAT, L-cycloserine and ß-chloro-L-alanine, inhibit L-alanine production and impair D-glucose uptake of LLC1 Lewis lung carcinoma cells. The latter inhibition is linked to an initial energy deficit, as quantified by decreased ATP content, which is then followed by an activation of AMP-activated protein kinase and subsequently increased respiration rates and mitochondrial production of reactive oxygen species, culminating in ATP replenishment in ALAT-inhibited LLC1 cells. Moreover, we observe altered phosphorylation of p38 MAPK (mitogen-activated protein kinase 14), ERK (extracellular signal-regulated kinase 1/2), and Rb1 (retinoblastoma 1) proteins, as well as decreased expression of Cdc25a (cell decision cycle 25 homolog A) and Cdk4 (cyclin-dependent kinase 4). Importantly, these sequelae of ALAT inhibition culminate in similarly reduced anchorage-dependent and anchorage-independent growth rates of LLC1 cells, together suggesting that inhibition of ALAT efficiently impairs cancer growth by counteracting the Warburg effect due to compensatory activation of mitochondrial metabolism.


Assuntos
Alanina Transaminase/antagonistas & inibidores , Biologia Computacional , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Alanina/biossíntese , Alanina Transaminase/metabolismo , Animais , Ligação Competitiva , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Eur J Nutr ; 51(6): 765-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22422488

RESUMO

PURPOSE: Compounds that delay aging in model organisms may be of significant interest to anti-aging medicine, since these substances potentially provide pharmaceutical approaches to promote healthy lifespan in humans. We here aimed to test whether pharmaceutical concentrations of L-theanine, a putative anti-cancer, anti-obesity, blood pressure-lowering, and neuroprotective compound contained in green tea (Camellia sinensis), are capable of extending lifespan in a nematodal model organism for aging processes, the roundworm Caenorhabditis elegans. METHODS: Adult C. elegans roundworms were maintained on agar plates, were fed E. coli strain OP50 bacteria, and L-theanine was applied to agar to test (1) whether it may increase survival upon paraquat exposure and (2) whether it may promote longevity by quantifying survival in the presence and absence of the compound. RESULTS: L-Theanine increases survival of C. elegans in the presence of paraquat at a concentration of 1 micromolar. L-theanine extends C. elegans lifespan when applied at concentrations of 100 nM, as well as 1 and 10 micromolar. CONCLUSIONS: In the model organism C. elegans, L-theanine is capable of promoting paraquat resistance and longevity suggesting that this compound may as well promote healthy lifespan in mammals and possibly humans.


Assuntos
Antioxidantes/farmacocinética , Caenorhabditis elegans/efeitos dos fármacos , Glutamatos/farmacologia , Longevidade , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/administração & dosagem , Caenorhabditis elegans/crescimento & desenvolvimento , Camellia sinensis/química , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Glutamatos/administração & dosagem , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Fármacos Neuroprotetores/administração & dosagem , Concentração Osmolar , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Folhas de Planta/química , Análise de Sobrevida
9.
Proc Natl Acad Sci U S A ; 106(21): 8665-70, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19433800

RESUMO

Exercise promotes longevity and ameliorates type 2 diabetes mellitus and insulin resistance. However, exercise also increases mitochondrial formation of presumably harmful reactive oxygen species (ROS). Antioxidants are widely used as supplements but whether they affect the health-promoting effects of exercise is unknown. We evaluated the effects of a combination of vitamin C (1000 mg/day) and vitamin E (400 IU/day) on insulin sensitivity as measured by glucose infusion rates (GIR) during a hyperinsulinemic, euglycemic clamp in previously untrained (n = 19) and pretrained (n = 20) healthy young men. Before and after a 4 week intervention of physical exercise, GIR was determined, and muscle biopsies for gene expression analyses as well as plasma samples were obtained to compare changes over baseline and potential influences of vitamins on exercise effects. Exercise increased parameters of insulin sensitivity (GIR and plasma adiponectin) only in the absence of antioxidants in both previously untrained (P < 0.001) and pretrained (P < 0.001) individuals. This was paralleled by increased expression of ROS-sensitive transcriptional regulators of insulin sensitivity and ROS defense capacity, peroxisome-proliferator-activated receptor gamma (PPARgamma), and PPARgamma coactivators PGC1alpha and PGC1beta only in the absence of antioxidants (P < 0.001 for all). Molecular mediators of endogenous ROS defense (superoxide dismutases 1 and 2; glutathione peroxidase) were also induced by exercise, and this effect too was blocked by antioxidant supplementation. Consistent with the concept of mitohormesis, exercise-induced oxidative stress ameliorates insulin resistance and causes an adaptive response promoting endogenous antioxidant defense capacity. Supplementation with antioxidants may preclude these health-promoting effects of exercise in humans.


Assuntos
Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Exercício Físico/fisiologia , Saúde , Adulto , Ácido Ascórbico/efeitos adversos , Ácido Ascórbico/farmacologia , Biomarcadores/sangue , Humanos , Insulina/sangue , Insulina/fisiologia , Resistência à Insulina/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Especificidade por Substrato , Fatores de Tempo , Vitamina E/efeitos adversos , Vitamina E/farmacologia
10.
Sci Rep ; 12(1): 21050, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473898

RESUMO

Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.


Assuntos
Envelhecimento , Camundongos Endogâmicos C57BL , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL/metabolismo
11.
Nat Commun ; 13(1): 107, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013237

RESUMO

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Classe II de Fosfatidilinositol 3-Quinases/genética , Diabetes Mellitus Tipo 2/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Longevidade/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/efeitos dos fármacos , Metilação , Camundongos , Papaverina/farmacologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
12.
Lab Invest ; 91(12): 1766-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21863062

RESUMO

The mitochondrial protein frataxin (FXN) is known to be involved in mitochondrial iron homeostasis and iron-sulfur cluster biogenesis. It is discussed to modulate function of the electron transport chain and production of reactive oxygen species (ROS). FXN loss in neurons and heart muscle cells causes an autosomal-dominant mitochondrial disorder, Friedreich's ataxia. Recently, tumor induction after targeted FXN deletion in liver and reversal of the tumorigenic phenotype of colonic carcinoma cells following FXN overexpression were described in the literature, suggesting a tumor suppressor function. We hypothesized that a partial reversal of the malignant phenotype of glioma cells should occur after FXN transfection, if the mitochondrial protein has tumor suppressor functions in these brain tumors. In astrocytic brain tumors and tumor cell lines, we observed reduced FXN levels compared with non-neoplastic astrocytes. Mitochondrial content (citrate synthase activity) was not significantly altered in U87MG glioblastoma cells stably overexpressing FXN (U87-FXN). Surprisingly, U87-FXN cells exhibited increased cytoplasmic ROS levels, although mitochondrial ROS release was attenuated by FXN, as expected. Higher cytoplasmic ROS levels corresponded to reduced activities of glutathione peroxidase and catalase, and lower glutathione content. The defect of antioxidative capacity resulted in increased susceptibility of U87-FXN cells against oxidative stress induced by H(2)O(2) or buthionine sulfoximine. These characteristics may explain a higher sensitivity toward staurosporine and alkylating drugs, at least in part. On the other hand, U87-FXN cells exhibited enhanced growth rates in vitro under growth factor-restricted and hypoxic conditions and in vivo using tumor xenografts in nude mice. These data contrast to a general tumor suppressor function of FXN but suggest a dual, pro-proliferative but chemosensitizing role in astrocytic tumors.


Assuntos
Astrocitoma/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Animais , Antineoplásicos Alquilantes , Apoptose , Linhagem Celular Transformada , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Humanos , Proteínas de Ligação ao Ferro/genética , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Frataxina
13.
Eur J Nutr ; 50(5): 387-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21301855

RESUMO

PURPOSE: Lithium is a nutritionally essential trace element predominantly contained in vegetables, plant-derived foods, and drinking water. Environmental lithium exposure and concurrent nutritional intake vary considerably in different regions. We here have analyzed the possibility that low-dose lithium exposure may affect mortality in both metazoans and mammals. METHODS: Based on a large Japanese observational cohort, we have used weighted regression analysis to identify putative effects of tap water-derived lithium uptake on overall mortality. Independently, we have exposed Caenorhabditis elegans, a small roundworm commonly used for anti-aging studies, to comparable concentrations of lithium, and have quantified mortality during this intervention. RESULTS: In humans, we find here an inverse correlation between drinking water lithium concentrations and all-cause mortality in 18 neighboring Japanese municipalities with a total of 1,206,174 individuals (ß = -0.661, p = 0.003). Consistently, we find that exposure to a comparably low concentration of lithium chloride extends life span of C. elegans (p = 0.047). CONCLUSIONS: Taken together, these findings indicate that long-term low-dose exposure to lithium may exert anti-aging capabilities and unambiguously decreases mortality in evolutionary distinct species.


Assuntos
Envelhecimento , Lítio/farmacocinética , Longevidade , Mortalidade , Oligoelementos/farmacocinética , Animais , Povo Asiático , Caenorhabditis elegans/fisiologia , Estudos de Coortes , Relação Dose-Resposta a Droga , Água Potável/análise , Água Potável/química , Exposição Ambiental , Humanos , Lítio/administração & dosagem , Lítio/análise , Modelos Animais , Análise de Regressão , Oligoelementos/administração & dosagem , Poluentes Químicos da Água/análise
14.
Aging (Albany NY) ; 13(19): 22629-22648, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607977

RESUMO

Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. A concentration of 2.5 µM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. elegans. Catechins hampered mitochondrial respiration in C. elegans after 6-12 h and the activity of complex I in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced SOD and CAT activities, required for the positive impact of catechins on lifespan. In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins reduced fat content, enhanced ROS defense, and improved healthspan in the long term.


Assuntos
Catequina/análogos & derivados , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Longevidade/efeitos dos fármacos , Chá/química , Animais , Caenorhabditis elegans , Catequina/química , Catequina/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Fisiológico/efeitos dos fármacos
15.
Eur J Nutr ; 49(7): 417-27, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20221766

RESUMO

PURPOSE: Both dietary fat and dietary sucrose are major components of Western diets that may differentially affect the risk for body mass gain, diabetes mellitus, and cardiovascular disease. METHODS: We have phenotypically analyzed mice with ubiquitously impaired expression of mitochondrial frataxin protein that were challenged with diets differing in macronutrient content, namely high-sucrose/low-fat and high-saturated fat/low-sugar diets. RESULTS: We find here that a high-sucrose/low-fat diet has especially detrimental effects in mice with impaired mitochondrial metabolism promoting several independent cardiovascular risk factors, including impaired glucose metabolism, fasting hyperinsulinemia, reduced glucose-stimulated insulin secretion, increased serum triglycerides, and elevated cholesterol levels due to increased expression of HMG-CoA reductase. In contrast, a high-saturated fat/low-sugar diet protects mice with impaired mitochondrial metabolism from diet-induced obesity by increasing total energy expenditure and increasing expression of ACAA2, a rate-limiting enzyme of mitochondrial beta-oxidation, whereas no concomitant improvement of glucose metabolism was observed. CONCLUSIONS: Taken together, our results suggest that mitochondrial dysfunction may cause sucrose to become a multifunctional cardiovascular risk factor, whereas low-sugar diets high in saturated fat may prevent weight gain without improving glucose metabolism.


Assuntos
Doenças Cardiovasculares/dietoterapia , Gorduras na Dieta/sangue , Sacarose Alimentar/sangue , Glucose/metabolismo , Mitocôndrias/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Diabetes Mellitus/dietoterapia , Dieta com Restrição de Gorduras , Gorduras na Dieta/metabolismo , Sacarose Alimentar/metabolismo , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Secreção de Insulina , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Camundongos , Obesidade/dietoterapia , Oxirredução , Fatores de Risco , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso , Frataxina
16.
Redox Biol ; 32: 101448, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203922

RESUMO

Physiological aging is a complex process, influenced by a plethora of genetic and environmental factors. While being far from fully understood, a number of common aging hallmarks have been elucidated in recent years. Among these, transcriptomic alterations are hypothesized to represent a crucial early manifestation of aging. Accordingly, several transcription factors (TFs) have previously been identified as important modulators of lifespan in evolutionarily distant model organisms. Based on a set of TFs conserved between nematodes, zebrafish, mice, and humans, we here perform a RNA interference (RNAi) screen in C. elegans to discover evolutionarily conserved TFs impacting aging. We identify a basic helix-loop-helix TF, named HLH-2 in nematodes (Tcf3/E2A in mammals), to exert a pronounced lifespan-extending effect in C. elegans upon impairment. We further show that its impairment impacts cellular energy metabolism, increases parameters of healthy aging, and extends nematodal lifespan in a ROS-dependent manner. We then identify arginine kinases, orthologues of mammalian creatine kinases, as a target of HLH-2 transcriptional regulation, serving to mediate the healthspan-promoting effects observed upon impairment of hlh-2 expression. Consistently, HLH-2 is shown to epistatically interact with core components of known lifespan-regulating pathways, i.e. AAK-2/AMPK and LET-363/mTOR, as well as the aging-related TFs SKN-1/Nrf2 and HSF-1. Lastly, single-nucelotide polymorphisms (SNPs) in Tcf3/E2A are associated with exceptional longevity in humans. Together, these findings demonstrate that HLH-2 regulates energy metabolism via arginine kinases and thereby affects the aging phenotype dependent on ROS-signaling and established canonical effectors.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Camundongos , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Nat Commun ; 11(1): 2080, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350271

RESUMO

Excessive insulin signaling through the insulin receptor (IR) may play a role in the pathogenesis of diet-induced metabolic disease, including obesity and type 2 diabetes. Here we investigate whether heterozygous impairment of insulin receptor (IR) expression limited to peripheral, i.e. non-CNS, tissues of adult mice impacts the development of high-fat diet-induced metabolic deterioration. While exhibiting some features of insulin resistance, PerIRKO+/- mice display a hepatic energy deficit accompanied by induction of energy-sensing AMPK, mitochondrial biogenesis, PPARα, unexpectedly leading to protection from, and reversal of hepatic lipid accumulation (steatosis hepatis, NAFLD). Consistently, and unlike in control mice, the PPARα activator fenofibrate fails to further affect hepatic lipid accumulation in PerIRKO+/- mice. Taken together, and opposing previously established diabetogenic features of insulin resistance, incomplete impairment of insulin signaling may mimic central aspects of calorie restriction to limit hepatic lipid accumulation during conditions of metabolic stress.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Jejum/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Receptor de Insulina/metabolismo , Animais , Composição Corporal , Metabolismo Energético , Comportamento Alimentar , Glucose/metabolismo , Homeostase , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Chembiochem ; 10(10): 1689-96, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19492396

RESUMO

Targeted accumulation of chemically unaltered compounds within the mitochondrial compartment has not yet been achieved. Here we describe a reversible tag that is endogenously cleaved after mitochondrial accumulation has occurred. Specifically, we have reversibly tagged alpha-lipoic acid with a triphenylphosphonium moiety that is cleaved by the physiologically contained mitochondrial aldehyde dehydrogenase (ALDH-2). This reversibly tagged compound activates the lipoic acid-sensitive pyruvate dehydrogenase complex, and this results in increased glucose oxidation. We observed a reduction in ROS accumulation after preincubation with the reversibly tagged compound, whereas untagged or irreversibly tagged compounds either had no effect on ROS formation or rather caused increased oxidative stress, respectively. Lastly, the cytotoxicity of the reversibly tagged compound is less than that of the irreversibly tagged compound. Overall, reversible tagging combines decreased tag-related cytotoxicity with increased bioactivity, and this potentially provides a novel concept in mitochondrial pharmacology.


Assuntos
Mitocôndrias/enzimologia , Compostos Organofosforados/química , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Aldeído Desidrogenase/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Mitocôndrias/metabolismo , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Complexo Piruvato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/síntese química , Ácido Tióctico/farmacologia
20.
Genes (Basel) ; 10(7)2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337008

RESUMO

Mitochondrial complex I-the largest enzyme complex of the mitochondrial oxidative phosphorylation machinery-has been proposed to contribute to a variety of age-related pathological alterations as well as longevity. The enzyme complex-consisting proteins are encoded by both nuclear (nDNA) and mitochondrial DNA (mtDNA). While some association studies of mtDNA encoded complex I genes and lifespan in humans have been reported, experimental evidence and the functional consequence of such variants is limited to studies using invertebrate models. Here, we present experimental evidence that a homoplasmic mutation in the mitochondrially encoded complex I gene mt-Nd2 modulates lifespan by altering cellular tryptophan levels and, consequently, ageing-related pathways in mice. A conplastic mouse strain carrying a mutation at m.4738C > A in mt-Nd2 lived slightly, but significantly, shorter than the controls did. The same mutation led to a higher susceptibility to glucose intolerance induced by high-fat diet feeding. These phenotypes were not observed in mice carrying a mutation in another mtDNA encoded complex I gene, mt-Nd5, suggesting the functional relevance of particular mutations in complex I to ageing and age-related diseases.


Assuntos
Longevidade/genética , Herança Materna , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Animais , DNA Mitocondrial , Dieta Hiperlipídica , Feminino , Intolerância à Glucose , Masculino , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos C57BL , Mutação , Estresse Fisiológico , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa