Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 44(6): 1710-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24643764

RESUMO

The intestinal microbiota influences not only metabolic processes, but also the mucosal and systemic immune systems. Here, we compare innate and adaptive immune responses against the intracellular pathogen Listeria monocytogenes in germfree (GF) and conventional mice. We show that animals without endogenous microbiota are highly susceptible to primary infection with impaired activation and accumulation of phagocytes to the site of infection. Unexpectedly, secondary infection with otherwise lethal dose resulted in survival of all GF animals which cleared bacteria more rapidly and developed a stronger antilisterial CD8(+) memory T-cell response compared to conventional mice. In summary, lack of the intestinal microbiota impairs early innate immunity, but enhances activation and expansion of memory T cells.


Assuntos
Imunidade Adaptativa , Linfócitos T CD8-Positivos/imunologia , Mucosa Intestinal , Intestinos , Listeria monocytogenes/imunologia , Listeriose/imunologia , Microbiota/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Imunidade Inata , Memória Imunológica , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Listeriose/patologia , Camundongos
2.
Microbiome ; 10(1): 158, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171625

RESUMO

BACKGROUND: The intestinal microbiota fundamentally guides the development of a normal intestinal physiology, the education, and functioning of the mucosal immune system. The Citrobacter rodentium-carrier model in germ-free (GF) mice is suitable to study the influence of selected microbes on an otherwise blunted immune response in the absence of intestinal commensals. RESULTS: Here, we describe that colonization of adult carrier mice with 14 selected commensal microbes (OMM12 + MC2) was sufficient to reestablish the host immune response to enteric pathogens; this conversion was facilitated by maturation and activation of the intestinal blood vessel system and the step- and timewise stimulation of innate and adaptive immunity. While the immature colon of C. rodentium-infected GF mice did not allow sufficient extravasation of neutrophils into the gut lumen, colonization with OMM12 + MC2 commensals initiated the expansion and activation of the visceral vascular system enabling granulocyte transmigration into the gut lumen for effective pathogen elimination. CONCLUSIONS: Consortium modeling revealed that the addition of two facultative anaerobes to the OMM12 community was essential to further progress the intestinal development. Moreover, this study demonstrates the therapeutic value of a defined consortium to promote intestinal maturation and immunity even in adult organisms. Video Abstract.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Animais , Citrobacter rodentium/fisiologia , Sistema Imunitário , Imunocompetência , Intestinos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa