Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain ; 147(9): 3018-3031, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38365267

RESUMO

Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.


Assuntos
Emoções , Expressão Facial , Humanos , Emoções/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Estimulação Elétrica , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética/métodos
2.
Epilepsia ; 64(6): e118-e126, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994648

RESUMO

Focal epileptic seizures are characterized by abnormal neuronal discharges that can spread to other cortical areas and interfere with brain activity, thereby altering the patient's experience and behavior. The origin of these pathological neuronal discharges encompasses various mechanisms that converge toward similar clinical manifestations. Recent studies have suggested that medial temporal lobe (MTL) and neocortical (NC) seizures are often underpinned by two characteristic onset patterns, which, respectively, affect and spare synaptic transmission in cortical slices. However, these synaptic alterations and their effects have never been confirmed or studied in intact human brains. To fill this gap, we here evaluate whether responsiveness of MTL and NC are differentially affected by focal seizures, using a unique data set of cortico-cortical evoked potentials (CCEPs) collected during seizures triggered by single-pulse electrical stimulation (SPES). We find that responsiveness is abruptly reduced by the onset of MTL seizures, despite increased spontaneous activity, whereas it is preserved in the case of NC seizures. The present results provide an extreme example of dissociation between responsiveness and activity and show that brain networks are diversely affected by the onset of MTL and NC seizures, thus extending at the whole brain level the evidence of synaptic alteration found in vitro.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Neocórtex , Humanos , Convulsões , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos
3.
Brain ; 144(12): 3779-3787, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34633436

RESUMO

Although clinical neuroscience and the neuroscience of consciousness have long sought mechanistic explanations of tactile-awareness disorders, mechanistic insights are rare, mainly because of the difficulty of depicting the fine-grained neural dynamics underlying somatosensory processes. Here, we combined the stereo-EEG responses to somatosensory stimulation with the lesion mapping of patients with a tactile-awareness disorder, namely tactile extinction. Whereas stereo-EEG responses present different temporal patterns, including early/phasic and long-lasting/tonic activities, tactile-extinction lesion mapping co-localizes only with the latter. Overlaps are limited to the posterior part of the perisylvian regions, suggesting that tonic activities may play a role in sustaining tactile awareness. To assess this hypothesis further, we correlated the prevalence of tonic responses with the tactile-extinction lesion mapping, showing that they follow the same topographical gradient. Finally, in parallel with the notion that visuotactile stimulation improves detection in tactile-extinction patients, we demonstrated an enhancement of tonic responses to visuotactile stimuli, with a strong voxel-wise correlation with the lesion mapping. The combination of these results establishes tonic responses in the parietal operculum as the ideal neural correlate of tactile awareness.


Assuntos
Hipestesia/fisiopatologia , Lobo Parietal/fisiopatologia , Percepção do Tato/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Hum Brain Mapp ; 42(17): 5523-5534, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520074

RESUMO

Deidentifying MRIs constitutes an imperative challenge, as it aims at precluding the possibility of re-identification of a research subject or patient, but at the same time it should preserve as much geometrical information as possible, in order to maximize data reusability and to facilitate interoperability. Although several deidentification methods exist, no comprehensive and comparative evaluation of deidentification performance has been carried out across them. Moreover, the possible ways these methods can compromise subsequent analysis has not been exhaustively tested. To tackle these issues, we developed AnonyMI, a novel MRI deidentification method, implemented as a user-friendly 3D Slicer plugin-in, which aims at providing a balance between identity protection and geometrical preservation. To test these features, we performed two series of analyses on which we compared AnonyMI to other two state-of-the-art methods, to evaluate, at the same time, how efficient they are at deidentifying MRIs and how much they affect subsequent analyses, with particular emphasis on source localization procedures. Our results show that all three methods significantly reduce the re-identification risk but AnonyMI provides the best geometrical conservation. Notably, it also offers several technical advantages such as a user-friendly interface, multiple input-output capabilities, the possibility of being tailored to specific needs, batch processing and efficient visualization for quality assurance.


Assuntos
Confidencialidade , Anonimização de Dados , Imageamento por Ressonância Magnética , Neuroimagem , Adulto , Humanos , Disseminação de Informação , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Neuroimagem/métodos , Neuroimagem/normas , Adulto Jovem
5.
Clin Neurophysiol ; 166: 96-107, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142121

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the applicability of visual evoked potentials (VEP) for intraoperative visual pathway monitoring in epilepsy surgery of the posterior hemispheric quadrant (PHQ) and to correlate it with post-operative visual field status. METHODS: VEP monitoring was performed in 16 patients (12 females, 7 children). Flash-induced VEP were recorded with strip electrodes from the banks of the calcarine cortex. Latency and amplitude of the first component of VEP (V1-lat, V1-amp) were monitored. Evaluation of the visual field was performed pre- and post-operatively in all patients. RESULTS: All procedures were successfully completed without adverse events. In 10 patients the strip covered both the inferior and superior calcarine banks, while only one bank was sampled in 6 cases (inferior in 4, superior in 2). Considering one of the two calcarine banks, at the end of the resection VEP had disappeared in 4 patients, whereas a decrease >33.3% in 4 and <20% of V1-amp was recorded in 5 and in 4 cases respectively. The percentage of V1-amp reduction was significantly higher for the patients who experienced a post-operative visual field reduction (p < 0.001). Post-operative visual field deficits were found in patients presenting a reduction >33.3% of V1-amp. CONCLUSIONS: VEP monitoring is possible and safe in epilepsy surgery under general anesthesia. SIGNIFICANCE: Intraoperative recording of VEP from the banks of the calcarine cortex allows monitoring the integrity of post-geniculate visual pathways during PHQ resections for epilepsy and it is pivotal to prevent disabling visual field defects, including hemianopia and inferior quadrantanopia.


Assuntos
Anestesia Geral , Epilepsia , Potenciais Evocados Visuais , Monitorização Neurofisiológica Intraoperatória , Campos Visuais , Vias Visuais , Humanos , Feminino , Masculino , Potenciais Evocados Visuais/fisiologia , Criança , Anestesia Geral/métodos , Vias Visuais/fisiopatologia , Vias Visuais/fisiologia , Epilepsia/cirurgia , Epilepsia/fisiopatologia , Monitorização Neurofisiológica Intraoperatória/métodos , Adolescente , Adulto , Campos Visuais/fisiologia , Adulto Jovem , Pré-Escolar , Córtex Visual/fisiopatologia , Córtex Visual/fisiologia , Córtex Visual/cirurgia
6.
J Neurosci Methods ; 409: 110193, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871302

RESUMO

BACKGROUND: Scalp EEG is one of the main tools in the clinical evaluation of epilepsy. In some cases intracranial Interictal Epileptiform Discharges (IEDs) are not visible from the scalp. Recent studies have shown the feasibility of revealing them in the EEG if their timings are extracted from simultaneous intracranial recordings, but their potential for the localization of the epileptogenic zone is not yet well defined. NEW METHOD: We recorded simultaneous high-density EEG (HD-EEG) and stereo-electroencephalography (SEEG) during interictal periods in 8 patients affected by drug-resistant focal epilepsy. We identified IEDs in the SEEG and systematically analyzed the time-locked signals on the EEG by means of evoked potentials, topographical analysis and Electrical Source Imaging (ESI). The dataset has been standardized and is being publicly shared. RESULTS: Our results showed that IEDs that were not clearly visible at single-trials could be uncovered by averaging, in line with previous reports. They also showed that their topographical voltage distributions matched the position of the SEEG electrode where IEDs had been identified, and that ESI techniques can reconstruct it with an accuracy of ∼2 cm. Finally, the present dataset provides a reference to test the accuracy of different methods and parameters. COMPARISON WITH EXISTING METHODS: Our study is the first to systematically compare ESI methods on simultaneously recorded IEDs, and to share a public resource with in-vivo data for their evaluation. CONCLUSIONS: Simultaneous HD-EEG and SEEG recordings can unveil hidden IEDs whose origins can be reconstructed using topographical and ESI analyses, but results depend on the selected methods and parameters.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Couro Cabeludo , Humanos , Eletroencefalografia/métodos , Masculino , Couro Cabeludo/fisiopatologia , Feminino , Adulto , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico , Adulto Jovem , Encéfalo/fisiopatologia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Técnicas Estereotáxicas , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Adolescente
7.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38352535

RESUMO

Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits which contribute to the associated evoked potentials (EPs). Here we find that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the subject's behavioral state. We optogenetically dissect the underlying circuit in mice, demonstrating that the late component of these EPs is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with the bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that the cortical stimulation engages cortico-thalamo-cortical circuits highly preserved across different species and stimulation modalities.

8.
Front Hum Neurosci ; 17: 1254779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900727

RESUMO

Language lateralization in patients with focal epilepsy frequently diverges from the left-lateralized pattern that prevails in healthy right-handed people, but the mechanistic explanations are still a matter of debate. Here, we debate the complex interaction between focal epilepsy, language lateralization, and functional neuroimaging techniques by introducing the case of a right-handed patient with unaware focal seizures preceded by aphasia, in whom video-EEG and PET examination suggested the presence of focal cortical dysplasia in the right superior temporal gyrus, despite a normal structural MRI. The functional MRI for language was inconclusive, and the neuropsychological evaluation showed mild deficits in language functions. A bilateral stereo-EEG was proposed confirming the right superior temporal gyrus origin of seizures, revealing how ictal aphasia emerged only once seizures propagated to the left superior temporal gyrus and confirming, by cortical mapping, the left lateralization of the posterior language region. Stereo-EEG-guided radiofrequency thermocoagulations of the (right) focal cortical dysplasia not only reduced seizure frequency but led to the normalization of the neuropsychological assessment and the "restoring" of a classical left-lateralized functional MRI pattern of language. This representative case demonstrates that epileptiform activity in the superior temporal gyrus can interfere with the functioning of the contralateral homologous cortex and its associated network. In the case of presurgical evaluation in patients with epilepsy, this interference effect must be carefully taken into consideration. The multimodal language lateralization assessment reported for this patient further suggests the sensitivity of different explorations to this interference effect. Finally, the neuropsychological and functional MRI changes after thermocoagulations provide unique cues on the network pathophysiology of focal cortical dysplasia and the role of diverse techniques in indexing language lateralization in complex scenarios.

9.
Commun Biol ; 3(1): 80, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080326

RESUMO

The properties of the secondary somatosensory area (SII) have been described by many studies in monkeys and humans. Recent studies on monkeys, however, showed that beyond somatosensory stimuli, SII responds to a wider number of stimuli, a finding requiring a revision that human SII is purely sensorimotor. By recording cortical activity with stereotactic electroencephalography (stereo-EEG), we examined the properties of SI and SII in response to a motor task requiring reaching, grasping and manipulation, as well as the observation of the same actions. Furthermore, we functionally characterized this area with a set of clinical tests, including tactile, acoustical, and visual stimuli. The results showed that only SII activates both during execution and observation with a common temporal profile, whereas SI response were limited to execution. Together with their peculiar response to tactile stimuli, we conclude that the role of SII is pivotal also in the observation of actions involving haptic control.


Assuntos
Função Executiva/fisiologia , Observação , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Adulto , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/psicologia , Eletrodos Implantados , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Mãos/fisiologia , Humanos , Masculino , Exame Neurológico , Neurônios/fisiologia , Monitorização Neurofisiológica , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/citologia , Percepção Visual/fisiologia
10.
Sci Data ; 7(1): 127, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345974

RESUMO

Precisely localizing the sources of brain activity as recorded by EEG is a fundamental procedure and a major challenge for both research and clinical practice. Even though many methods and algorithms have been proposed, their relative advantages and limitations are still not well established. Moreover, these methods involve tuning multiple parameters, for which no principled way of selection exists yet. These uncertainties are emphasized due to the lack of ground-truth for their validation and testing. Here we present the Localize-MI dataset, which constitutes the first open dataset that comprises EEG recorded electrical activity originating from precisely known locations inside the brain of living humans. High-density EEG was recorded as single-pulse biphasic currents were delivered at intensities ranging from 0.1 to 5 mA through stereotactically implanted electrodes in diverse brain regions during pre-surgical evaluation of patients with drug-resistant epilepsy. The uses of this dataset range from the estimation of in vivo tissue conductivity to the development, validation and testing of forward and inverse solution methods.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda , Eletroencefalografia , Algoritmos , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos , Eletrodos Implantados , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa