Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 533(7603): 369-73, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27135928

RESUMO

Two-dimensional (2D) crystalline materials possess unique structural, mechanical and electronic properties that make them highly attractive in many applications. Although there have been advances in preparing 2D materials that consist of one or a few atomic or molecular layers, bottom-up assembly of 2D crystalline materials remains a challenge and an active area of development. More challenging is the design of dynamic 2D lattices that can undergo large-scale motions without loss of crystallinity. Dynamic behaviour in porous three-dimensional (3D) crystalline solids has been exploited for stimuli-responsive functions and adaptive behaviour. As in such 3D materials, integrating flexibility and adaptiveness into crystalline 2D lattices would greatly broaden the functional scope of 2D materials. Here we report the self-assembly of unsupported, 2D protein lattices with precise spatial arrangements and patterns using a readily accessible design strategy. Three single- or double-point mutants of the C4-symmetric protein RhuA were designed to assemble via different modes of intermolecular interactions (single-disulfide, double-disulfide and metal-coordination) into crystalline 2D arrays. Owing to the flexibility of the single-disulfide interactions, the lattices of one of the variants ((C98)RhuA) are essentially defect-free and undergo substantial, but fully correlated, changes in molecular arrangement, yielding coherently dynamic 2D molecular lattices. (C98)RhuA lattices display a Poisson's ratio of -1-the lowest thermodynamically possible value for an isotropic material-making them auxetic.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Maleabilidade , Aldeído Liases/genética , Aldeído Liases/ultraestrutura , Cristalização , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/química , Metais/química , Metais/farmacologia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Maleabilidade/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Rotação , Estresse Mecânico , Termodinâmica
3.
Mater Struct ; 502017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28082830

RESUMO

This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

4.
J Mech Behav Biomed Mater ; 118: 104399, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662741

RESUMO

The mechanical properties of cellulose nanocrystal (CNC) films critically depend on many microstructural parameters such as fiber length distribution (FLD), fiber orientation distribution (FOD), and the strength of the interactions between the fibers. In this paper, we use our coarse-grained molecular model of CNC to study the effect of length and orientation distribution and attractions between CNCs on the mechanical properties of neat CNCs. The effect of misalignment of a 2D staggered structure of CNC with respect to the loading direction was studied with simulations and analytical solutions and then verified with experiments. To understand the effect of FLD and FOD on the mechanical performance, various 3D microstructures representing different case studies such as highly aligned, randomly distributed, short length CNCs and long length CNCs were generated and simulated. According to the misalignment study, three different failure modes: sliding mode, mixed mode, and normal mode were defined. Also, comparing the effects of FOD, FLD, and CNC interaction strength, shows that the adhesion strength is the only parameter that can significantly improve the mechanical properties, regardless of loading direction or FOD of CNCs.


Assuntos
Celulose , Nanopartículas
5.
J Mech Behav Biomed Mater ; 96: 244-260, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075746

RESUMO

Geometrically patterned interfaces seem to be a common motif in Nature. In particular, geometry plays an important role in increasing the strength, toughness and damage tolerance among different species. Here, we investigate the role of the shape of the opening crack behind the crack tip as the crack propagates along the interface. In particular, we studied the shape of the interface behind the crack tip for different amplitude-to-wavelength aspect ratios with two analytical models and compared with finite element simulations through the J-integral. Additionally, we explore the role of material length scale by investigating the relationship between the geometrical characteristic lengths and the emerging material length scale using a finite element-based cohesive zone model. The results suggest that geometrical toughening is influenced by a size effect, but it is bounded between two extreme conditions.


Assuntos
Biomimética , Análise de Elementos Finitos , Fenômenos Mecânicos , Modelos Teóricos , Estresse Mecânico , Suporte de Carga
6.
Sci Rep ; 9(1): 12581, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467381

RESUMO

Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.

7.
Sci Rep ; 9(1): 5757, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962474

RESUMO

The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models - transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) - to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.


Assuntos
Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica/métodos , Animais , Anisotropia , Linhagem Celular Tumoral , Simulação por Computador , Análise de Elementos Finitos , Humanos , Fenômenos Mecânicos , Camundongos , Células NIH 3T3
8.
Adv Mater ; 30(43): e1802123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159935

RESUMO

There is an increasing interest in hierarchical design and additive manufacturing (AM) of cement-based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement-based materials to eliminate the interfaces in 3D-printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures). These architectures are found to generate unique damage mechanisms, which allow inherently brittle hcp materials to attain flaw-tolerant properties and novel performance characteristics. It is hypothesized that combining heterogeneous interfaces with carefully designed architectures promotes such damage mechanisms as, among others, interfacial microcracking and crack twisting. This, in turn, leads to damage delocalization in brittle 3D-printed architectured hcp and therefore results in quasi-brittle behavior, enhanced fracture and damage tolerance, and unique load-displacement response, all without sacrificing strength. It is further found that in addition to delocalization of the cracks, the Bouligand architectures can also enhance work of failure and inelastic deflection of the architectured hcp elements by over 50% when compared to traditionally cast elements from the same materials.


Assuntos
Impressão Tridimensional , Teste de Materiais , Cimentos de Resina
10.
Adv Mater ; 28(32): 6835-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27238289

RESUMO

A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high-load nanoindentation and in situ transmission electron microscopy picoindentation.

11.
Acta Biomater ; 23: 11-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25983314

RESUMO

Wave propagation was investigated in the Bouligand-like structure from within the dactyl club of the stomatopod, a crustacean that is known to smash their heavily shelled preys with high accelerations. We incorporate the layered nature in a unitary material cell through the propagator matrix formalism while the periodic nature of the material is considered via Bloch boundary conditions as applied in the theory of solid state physics. Our results show that these materials exhibit bandgaps at frequencies related to the stress pulse generated by the impact of the dactyl club to its prey, and therefore exhibiting wave filtering in addition to the already known mechanisms of macroscopic isotropic behavior and toughness.


Assuntos
Aceleração , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Modelos Biológicos , Absorção de Radiação , Animais , Simulação por Computador , Módulo de Elasticidade/fisiologia , Estimulação Física/métodos , Espalhamento de Radiação , Resistência ao Cisalhamento , Estresse Mecânico , Vibração , Viscosidade
12.
Nat Commun ; 2: 173, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21285951

RESUMO

Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Carbonato de Cálcio/química , Gastrópodes/anatomia & histologia , Nanotecnologia/métodos , Animais , Fenômenos Biomecânicos , Proteínas da Matriz Extracelular/química , Gastrópodes/metabolismo , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa