Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 19(1): 89, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093677

RESUMO

BACKGROUND: Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR. METHODS: The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex. RESULTS: Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni. CONCLUSION: This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Reação em Cadeia da Polimerase Multiplex , Animais , DNA/análise , República Democrática do Congo , Malária , Especificidade da Espécie
2.
Malar J ; 17(1): 49, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370805

RESUMO

BACKGROUND: Anopheles funestus has been recognized as a major malaria vector in Africa for over 100 years, but knowledge on many aspects of the biology of this species is still lacking. Anopheles funestus, as with most other anophelines, mate through swarming. A key event that is crucial for the An. funestus male to mate is genitalia rotation. This involves the 135° to 180° rotation of claspers, which are tipped with claws. This physical change then enables the male to grasp the female during copulation. The aim of this investigation was to molecularly characterize wild An. funestus swarms from Zambia and examine the degree of genitalia rotation within the swarm. METHODS: Anopheles funestus swarms were collected from Nchelenge, northern Zambia, during dusk periods in May 2016. All the adults from the swarm were analysed morphologically and identified to species level using a multiplex PCR assay. Anopheles funestus s.s. specimens were molecularly characterized by restriction fragment length polymorphism type and Clade type assays. The different stages of genitalia rotation were examined in the adult males. RESULTS: A total of six swarms were observed during the study period and between 6 and 26 mosquitoes were caught from each swarm. Species analysis revealed that 90% of the males from the swarms were An. funestus s.s. MW-type, with 84% belonging to clade I compared to 14% clade II and 2% failed to amplify. Very few specimens (3.4%) were identified as Anopheles gambiae s.s. Eighty percent of the males from the swarm had complete genitalia rotation. CONCLUSIONS: This is the first time that An. funestus swarms have been molecularly identified to species level. Anopheles funestus swarms appear to be species-specific with no evidence of clade-type differentiation within these swarms. The An. funestus swarms consist mainly of males with fully rotated genitalia, which strongly suggests that swarming behaviour is triggered primarily when males have matured.


Assuntos
Anopheles/genética , Anopheles/fisiologia , Comportamento Animal/fisiologia , Inseminação/fisiologia , Animais , DNA/genética , Feminino , Genitália Feminina/fisiologia , Genitália Masculina/fisiologia , Masculino , Polimorfismo de Fragmento de Restrição , Zâmbia
3.
Mol Biochem Parasitol ; 260: 111631, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844266

RESUMO

Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.

4.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33573376

RESUMO

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/metabolismo , Feminino , Células Germinativas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Relação Estrutura-Atividade
5.
Nat Ecol Evol ; 4(10): 1395-1401, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747772

RESUMO

Accumulating behavioural data indicate that aggregation pheromones may mediate the formation and maintenance of mosquito swarms. However, chemical cues possibly luring mosquitoes to swarms have not been adequately investigated, and the likely molecular incitants of these complex reproductive behaviours remain unknown. Here we show that males of the important malaria vector species Anopheles arabiensis and An. gambiae produce and release aggregation pheromones that attract individuals to the swarm and enhance mating success. We found that males of both species released significantly higher amounts of 3-hydroxy-2-butanone (acetoin), 6-methyl-5-hepten-2-one (sulcatone), octanal, nonanal and decanal during swarming in the laboratory. Feeding males with stable-isotope-labelled glucose revealed that the males produced these five compounds. A blend composed of synthetic analogues to these swarming odours proved highly attractive to virgin males and females of both species under laboratory conditions and substantially increased mating in five African malaria vectors (An. gambiae, An. coluzzii, An. arabiensis, An. merus and An. funestus) in semi-field experiments. Our results not only narrow a conspicuous gap in understanding a vital aspect of the chemical ecology of male mosquitoes but also demonstrate fundamental roles of rhythmic and metabolic genes in the physiology and behavioural regulation of these vectors. These identified aggregation pheromones have great potential for exploitation against these highly dangerous insects. Manipulating such pheromones could increase the efficacy of malaria-vector control programmes.


Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Masculino , Mosquitos Vetores , Feromônios , Reprodução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa