Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 782, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102595

RESUMO

In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.


Assuntos
Voo Espacial , Ausência de Peso , Bactérias , Biblioteca Gênica , Metabolismo Secundário
2.
New Phytol ; 231(4): 1546-1558, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105771

RESUMO

Plant-soil feedback (PSF) may change in strength over the life of plant individuals as plants continue to modify the soil microbial community. However, the temporal variation in PSF is rarely quantified and its impacts on plant communities remain unknown. Using a chronosequence reconstructed from annual aerial photographs of a coastal dune ecosystem, we characterized > 20-yr changes in soil microbial communities associated with individuals of the four dominant perennial species, one legume and three nonlegume. We also quantified the effects of soil biota on conspecific and heterospecific seedling performance in a glasshouse experiment that preserved soil properties of these individual plants. Additionally, we used a general individual-based model to explore the potential consequences of temporally varying PSF on plant community assembly. In all plant species, microbial communities changed with plant age. However, responses of plants to the turnover in microbial composition depended on the identity of the seedling species: only the soil biota effect experienced by the nonlegume species became increasingly negative with longer soil conditioning. Model simulation suggested that temporal changes in PSF could affect the transient dynamics of plant community assembly. These results suggest that temporal variation in PSF over the life of individual plants should be considered to understand how PSF structures plant communities.


Assuntos
Ecossistema , Solo , Biota , Plantas , Microbiologia do Solo
3.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386363

RESUMO

Priority effects, or the effects of species arrival history on local species abundances, have been documented in a range of taxa. However, factors determining the extent to which priority effects affect community assembly remain unclear. Using laboratory populations of the bacterium Pseudomonas fluorescens, we examined whether shared evolutionary history affected the strength of priority effects. We hypothesized that sympatric evolution of populations belonging to the same guild would lead to niche differentiation, resulting in phenotypic complementarity that weakens priority effects. Consistent with this hypothesis, we found that priority effects tended to be weaker in sympatrically evolved pairs of immigrating populations than in allopatrically evolved pairs. Furthermore, priority effects were weaker under higher phenotypic complementarity. However, these patterns were observed only in populations with a relatively short history of sympatric evolution, and disappeared when populations had evolved together for a long time. Together, our results suggest that the evolutionary history of organismal traits may dictate the strength of priority effects and, consequently, the extent of historical contingency in the assembly of ecological communities.


Assuntos
Evolução Biológica , Pseudomonas fluorescens/fisiologia , Simpatria , Dinâmica Populacional
4.
Proc Natl Acad Sci U S A ; 112(29): 9076-81, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150498

RESUMO

Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter. Here, we first use natural isolates of the highly social bacterium Myxococcus xanthus to show that colony-merger incompatibilities can be strong barriers to social interaction, particularly by reducing chimerism in multicellular fruiting bodies that develop near colony-territory borders. We then use experimental laboratory populations to test hypotheses regarding the evolutionary origins of kin discrimination. We show that the generic process of adaptation, irrespective of selective environment, is sufficient to repeatedly generate kin-discriminatory behaviors between evolved populations and their common ancestor. Further, we find that kin discrimination pervasively evolves indirectly between allopatric replicate populations that adapt to the same ecological habitat and that this occurs generically in many distinct habitats. Patterns of interpopulation discrimination imply that kin discrimination phenotypes evolved via many diverse genetic mechanisms and mutation-accumulation patterns support this inference. Strong incompatibility phenotypes emerged abruptly in some populations but strengthened gradually in others. The indirect evolution of kin discrimination in an asexual microbe is analogous to the indirect evolution of reproductive incompatibility in sexual eukaryotes and linguistic incompatibility among human cultures, the commonality being indirect, noncoordinated divergence of complex systems evolving in isolation.


Assuntos
Evolução Biológica , Myxococcus xanthus/fisiologia , Adaptação Fisiológica , Quimera , Myxococcus xanthus/genética , Myxococcus xanthus/isolamento & purificação , Fenótipo , Fatores de Tempo
5.
Evol Ecol Res ; 15(1): 43-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24678268

RESUMO

BACKGROUND: A host obtains symbionts by horizontal transmission when infected from the environment or contagiously from other hosts in the same generation. In contrast, vertical transmission occurs when a host obtains its symbionts directly from its parents. Either vertical or horizontal transmission can sustain an association between a host and its symbiont. QUESTIONS: What evolutionary forces are necessary to evolve from an ancestral state of horizontal transmission to a derived state of vertical transmission? MATHEMATICAL METHODS: We explore a general model of fitness interaction, including both additive and epistatic effects, between host and symbiont genes. Recursion equations allow us to analyse the short-term behaviour of the model and to study long-term deterministic effects with numerical iterations. KEY ASSUMPTIONS: Obligate interaction between a symbiont and a single host species with genetically determined horizontal and vertical transmission. No free-living symbionts or uninfected hosts and each host is infected by only a single symbiont genetic lineage (no multiple infections). No population structure. CONCLUSIONS: Epistasis for fitness between host and symbiont genes, like that in a matching alleles model, is a necessary condition for the evolution of vertical from horizontal transmission. Stochastic individual-based simulations show that (1) mutation facilitates the switch to vertical transmission and (2) vertical transmission is a stable evolutionary endpoint for a matching alleles model.

6.
Astrobiology ; 22(7): 838-850, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731161

RESUMO

Brines at or near the surface of present-day Mars are a potential explanation for seasonally recurring dark streaks on the walls of craters, termed recurring slope lineae (RSL). Deliquescence and freezing point depression are possible drivers of brine stability, attributable to the high salinity observed in martian regolith including chlorides and perchlorates. Investigation of life, which may inhabit RSL, and the cellular mechanisms necessary for survival, must consider the tolerance of highly variable hydration, freeze-thaw cycles, and high osmolarity in addition to the anaerobic, oligotrophic, and irradiated environment. We propose the saltpan, an ephemeral, hypersaline wetland as an analogue for putative RSL hydrology. Saltpan sediment archaeal and bacterial communities showed tolerance of the Mars-analogous atmosphere, hydration, minerology, salinity, and temperature. Although active growth and a shift to well-adapted taxa were observed, susceptibility to low-concentration chloride and perchlorate addition suggested that such a composition was insufficient for beneficial water retention relative to added salt stress.


Assuntos
Marte , Microbiota , Cloretos/toxicidade , Meio Ambiente Extraterreno , Percloratos
8.
Commun Biol ; 1: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271996

RESUMO

Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

9.
Evolution ; 71(4): 1088-1095, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28128449

RESUMO

Epistatic interactions can greatly impact evolutionary phenomena, particularly the process of adaptation. Here, we leverage four parallel experimentally evolved lineages to study the emergence and trajectories of epistatic interactions in the social bacterium Myxococcus xanthus. A social gene (pilA) necessary for effective group swarming on soft agar had been deleted from the common ancestor of these lineages. During selection for competitiveness at the leading edge of growing colonies, two lineages evolved qualitatively novel mechanisms for greatly increased swarming on soft agar, whereas the other two lineages evolved relatively small increases in swarming. By reintroducing pilA into different genetic backgrounds along the four lineages, we tested whether parallel lineages showed similar patterns of epistasis. In particular, we tested whether a pattern of negative epistasis between accumulating mutations and pilA previously found in the fastest lineage would be found only in the two evolved lineages with the fastest and most striking swarming phenotypes, or rather was due to common epistatic structure across all lineages arising from the generic fixation of adaptive mutations. Our analysis reveals the emergence of negative epistasis across all four independent lineages. Further, we present results showing that the observed negative epistasis is not due exclusively to evolving populations approaching a maximum phenotypic value that inherently limits positive effects of pilA reintroduction, but rather involves direct antagonistic interactions between accumulating mutations and the reintroduced social gene.


Assuntos
Evolução Biológica , Epistasia Genética , Aptidão Genética , Myxococcus xanthus/genética , Mutação , Myxococcus xanthus/crescimento & desenvolvimento
10.
Evolution ; 70(7): 1473-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27241367

RESUMO

The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen-fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype-by-genotype variation in patterns of plant growth. A relatively large component of this variation (21-28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia-rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies.


Assuntos
Acacia/microbiologia , Acacia/fisiologia , Evolução Biológica , Rhizobium/fisiologia , Simbiose , Proteínas de Bactérias/genética , N-Acetilglucosaminiltransferases/genética , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhizobium/genética
11.
Sci Data ; 3: 160028, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27163938

RESUMO

Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.


Assuntos
Bases de Dados Factuais , Micorrizas , Plantas , Simbiose , Biomassa , Filogenia , Plantas/microbiologia
12.
PLoS One ; 9(4): e95141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24762776

RESUMO

In the face of costs, cooperative interactions maintained over evolutionary time present a central question in biology. What forces maintain this cooperation? Two potential ways to explain this problem are spatially structured environments (kin selection) and kin-recognition (directed benefits). In a two-locus population genetic model, we investigated the relative roles of spatial structure and kin recognition in the maintenance of cooperation among rhizobia within the rhizobia-legume mutualism. In the case where the cooperative and kin recognition loci are independently inherited, spatial structure alone maintains cooperation, while kin recognition decreases the equilibrium frequency of cooperators. In the case of co-inheritance, spatial structure remains a stronger force, but kin recognition can transiently increase the frequency of cooperators. Our results suggest that spatial structure can be a dominant force in maintaining cooperation in rhizobium populations, providing a mechanism for maintaining the mutualistic nodulation trait. Further, our model generates unique and testable predictions that could be evaluated empirically within the legume-rhizobium mutualism.


Assuntos
Fabaceae/microbiologia , Rhizobium/genética , Evolução Biológica , Genes Bacterianos , Ligação Genética , Loci Gênicos , Inositol/análogos & derivados , Inositol/genética , Modelos Genéticos , Fixação de Nitrogênio , Nodulação , Simbiose
13.
Evolution ; 68(9): 2701-8, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909926

RESUMO

Although the importance of epistasis in evolution has long been recognized, remarkably little is known about the processes by which epistatic interactions evolve in real time in specific biological systems. Here, we have characterized how the epistatic fitness relationship between a social gene and an adapting genome changes radically over a short evolutionary time frame in the social bacterium Myxococcus xanthus. We show that a highly beneficial effect of this social gene in the ancestral genome is gradually reduced--and ultimately reversed into a deleterious effect--over the course of an experimental adaptive trajectory in which a primitive form of novel cooperation evolved. This reduction and reversal of a positive social allelic effect is driven solely by changes in the genetic context in which the gene is expressed as new mutations are sequentially fixed during adaptive evolution, and explicitly demonstrates a significant evolutionary change in the genetic architecture of an ecologically important social trait.


Assuntos
Epistasia Genética , Mutação , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Adaptação Fisiológica , Evolução Biológica , Aptidão Genética , Movimento , Myxococcus xanthus/fisiologia
14.
Science ; 328(5986): 1700-3, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20576891

RESUMO

Hamilton's rule states that cooperation will evolve if the fitness cost to actors is less than the benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying assumptions, however, and does not accurately describe social evolution in organisms such as microbes where selection is both strong and nonadditive. We derived a generalization of Hamilton's rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection was driven by higher-order moments of population structure, not relatedness. These results provide an empirically testable cooperation principle applicable to both microbes and multicellular organisms and show how nonlinear interactions among cells insulate bacteria against cheaters.


Assuntos
Interações Microbianas , Myxococcus xanthus/fisiologia , Evolução Biológica , Aptidão Genética , Genótipo , Modelos Biológicos , Modelos Estatísticos , Myxococcus xanthus/genética , Seleção Genética , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa