Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583169

RESUMO

BACKGROUND AIMS: Substrate elasticity may direct cell-fate decisions of stem cells. However, it is largely unclear how matrix stiffness affects the differentiation of induced pluripotent stem cells (iPSCs) and whether this is also reflected by epigenetic modifications. METHODS: We cultured iPSCs on tissue culture plastic (TCP) and polydimethylsiloxane (PDMS) with different Young's modulus (0.2 kPa, 16 kPa or 64 kPa) to investigate the sequel on growth and differentiation toward endoderm, mesoderm and ectoderm. RESULTS: Immunofluorescence and gene expression of canonical differentiation markers were hardly affected by the substrates. Notably, when we analyzed DNA methylation profiles of undifferentiated iPSCs or after three-lineage differentiation, we did not see any significant differences on the three different PDMS elasticities. Only when we compared DNA methylation profiles on PDMS-substrates versus TCP we did observe epigenetic differences, particularly on mesodermal differentiation. CONCLUSIONS: Stiffness of PDMS substrates did not affect directed differentiation of iPSCs, whereas the moderate epigenetic differences on TCP might also be attributed to other chemical parameters.

2.
Front Cell Dev Biol ; 11: 1302448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099298

RESUMO

Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination. We generated human induced pluripotent stem cell (iPSC) lines with deletions in the protein-coding region in exon 3 of CTCF, resulting in shorter transcripts and overall reduced protein expression. Chromatin immunoprecipitation showed a considerable loss of CTCF binding to target sites. The CTCF deletions resulted in slower growth and modest global changes in gene expression, with downregulation of a subset of pluripotency-associated genes and neuroectodermal genes. CTCF deletion also evoked DNA methylation changes, which were moderately associated with differential gene expression. Notably, CTCF-deletions lead to upregulation of endo-mesodermal associated marker genes and epigenetic signatures, whereas ectodermal differentiation was defective. These results indicate that CTCF plays an important role in the maintenance of pluripotency and differentiation, especially towards ectodermal lineages.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa