Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Brain Mapp ; 42(9): 2766-2777, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33666305

RESUMO

Dopamine (DA) mediated brain activity is intimately linked to reward-driven cerebral responses, while aberrant reward processing has been implicated in several psychiatric disorders. fMRI has been a valuable tool in understanding the mechanism by which DA modulators alter reward-driven responses and how they may exert their therapeutic effect. However, the potential effects of a pharmacological compound on aspects of neurovascular coupling may cloud the interpretability of the BOLD contrast. Here, we assess the effects of risperidone on reward driven BOLD signals produced by reward anticipation and outcome, while attempting to control for potential drug effects on regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). Healthy male volunteers (n = 21) each received a single oral dose of either 0.5 mg, 2 mg of risperidone or placebo in a double-blind, placebo-controlled, randomised, three-period cross-over study design. Participants underwent fMRI scanning while performing the widely used Monetary Incentive Delay (MID) task to assess drug impact on reward function. Measures of CBF (Arterial Spin Labelling) and breath-hold challenge induced BOLD signal changes (as a proxy for CVR) were also acquired and included as covariates. Risperidone produced divergent, dose-dependent effects on separate phases of reward processing, even after controlling for potential nonneuronal influences on the BOLD signal. These data suggest the D2 antagonist risperidone has a wide-ranging influence on DA-mediated reward function independent of nonneuronal factors. We also illustrate that assessment of potential vascular confounds on the BOLD signal may be advantageous when investigating CNS drug action and advocate for the inclusion of these additional measures into future study designs.


Assuntos
Antecipação Psicológica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Suspensão da Respiração , Circulação Cerebrovascular/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/farmacologia , Neuroimagem Funcional , Desempenho Psicomotor/efeitos dos fármacos , Recompensa , Risperidona/farmacologia , Adulto , Encéfalo/diagnóstico por imagem , Estudos Cross-Over , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Método Duplo-Cego , Humanos , Imageamento por Ressonância Magnética , Masculino , Risperidona/administração & dosagem , Adulto Jovem
2.
Diabetes Obes Metab ; 23(1): 175-185, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026175

RESUMO

AIM: To assess and compare the effects of 160 IU intranasal insulin (IN-INS) administration on regional cerebral blood flow (rCBF) in healthy male individuals with normal weight and overweight phenotypes. METHODS: Thirty young male participants (mean age 25.9 years) were recruited and stratified into two cohorts based on body mass index: normal weight (18.5-24.9 kg/m2 ) and overweight (25.0-29.9 kg/m2 ). On separate mornings participants received 160 IU of IN-INS using an intranasal protocol and intranasal placebo as part of a double-blind crossover design. Thirty minutes following administration rCBF data were collected using a magnetic resonance imaging method called pseudocontinuous arterial spin labelling. Blood samples were collected to assess insulin sensitivity and changes over time in peripheral glucose, insulin and C-peptide. RESULTS: Insulin sensitivity did not significantly differ between groups. Compared with placebo, IN-INS administration reduced rCBF in parts of the hippocampus, insula, putamen, parahippocampal gyrus and fusiform gyrus in the overweight group. No effect was seen in the normal weight group. Insula rCBF was greater in the overweight group versus normal weight only under placebo conditions. Peripheral glucose and insulin levels were not affected by IN-INS. C-peptide levels in the normal weight group decreased significantly over time following IN-INS administration but not placebo. CONCLUSION: Insulin-induced changes within key regions of the brain involved in gustation, memory and reward were observed in overweight healthy male individuals. Following placebo administration, differences in gustatory rCBF were observed between overweight and normal weight healthy individuals.


Assuntos
Circulação Cerebrovascular , Insulina , Administração Intranasal , Adulto , Encéfalo , Método Duplo-Cego , Humanos , Masculino , Sobrepeso
3.
Headache ; 60(7): 1244-1258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568433

RESUMO

OBJECTIVE: To understand the changes in functional connectivity between brain areas of potential importance in migraine during different phases of the attack. BACKGROUND: Migraine is a symptomatically heterogeneous disorder. Understanding the possible changes in brain function and, therefore, neurobiology during different phases of the migraine attack is important in developing disease biomarkers and advancing therapeutics. DESIGN: Randomized, double-blind, placebo-controlled, multi-visit experimental study. METHODS: Subjects aged 18-50 years with migraine with and without aura (≤22 headache days per month) were recruited from across the UK using advertising, from both population and hospital clinic samples (n = 53). Consented subjects were randomized to a 0.5 µg/kg/min nitroglycerin infusion or to placebo over 20 minutes across different study visits, during the period February 2015-July 2017.* All subjects were exposed to a nitroglycerin infusion at least on 1 occasion at screening.** For those subjects who consented to participate in imaging visits (n = 25), structural T1, T2 and FLAIR sequences and resting state blood oxygen level dependant contrast (rsBOLD) time series, using a multiecho EPI sequence, were conducted over 30-40 minutes at baseline and rsBOLD during premonitory symptoms and migraine headache on a 3T General Electric MR750 MRI scanner. For the placebo visit, the imaging was conducted at the same times following infusion in the absence of symptoms. RESULTS: Montreal Neurological Institute (MNI) coordinates were used to characterize identified brain areas of connectivity change. Using repeated measures ANOVA models with time (visit number) and trigger substance (nitroglycerin/placebo) as factors, significant positive functional coupling was found between the thalami bilaterally and the right precuneus and cuneus regions during the nitroglycerin-triggered premonitory phase (T = 3.23, peak connectivity change at [-6, -68, 40] for left thalamus, P = 0.012 and [-4, -68, 40] for right thalamus, P = 0.019). The nitroglycerin-triggered premonitory phase was associated with a change in the direction of connectivity from positive to negative between the pons and the limbic lobe (T = 3.47, peak connectivity change at [2, 8, 50], P < 0.001). The headache phase of the nitroglycerin-triggered migraine attack was associated with ongoing negative functional coupling between the pons and the cingulate and frontal cortices, and positive functional coupling between the pons and the cerebellar tonsils and medulla (T = 3.47, peak connectivity change at [-8, -52, -58], P = 0.007). CONCLUSIONS: Understanding the functional reorganization between subcortical and cortical brain areas in different phases of the migraine attack provides novel insights into the abnormal sensory processing and integration during migraine, as well as functional correlation with clinical symptoms displayed during each phase. [*Correction added on July 22, 2020 after first online publication: This sentence was revised from, "Consented subjects had a 0.5 µg/kg/min nitroglycerin infusion…".] [**Correction added on July 22, 2020 after first online publication: This sentence was revised from, "… at least on 1 occasion at screening."].


Assuntos
Tronco Encefálico/fisiopatologia , Conectoma , Giro do Cíngulo/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adolescente , Adulto , Tronco Encefálico/diagnóstico por imagem , Método Duplo-Cego , Imagem Ecoplanar , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Nitroglicerina/administração & dosagem , Córtex Pré-Frontal/diagnóstico por imagem , Fatores de Tempo , Vasodilatadores/administração & dosagem , Adulto Jovem
4.
Hum Brain Mapp ; 39(1): 319-331, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058358

RESUMO

Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Haloperidol/farmacologia , Risperidona/farmacologia , Adulto , Antipsicóticos/sangue , Benzodiazepinas/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Haloperidol/sangue , Humanos , Imageamento por Ressonância Magnética , Masculino , Olanzapina , Risperidona/sangue , Adulto Jovem
5.
Hum Brain Mapp ; 38(4): 1865-1874, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28035724

RESUMO

OBJECTIVE: To study resting cerebral blood flow in children and adults with developmental stuttering. METHODS: We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. RESULTS: We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared with healthy controls in Broca's area bilaterally and the superior frontal gyrus. rCBF values in Broca's area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared with healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. CONCLUSIONS: rCBF is reduced in Broca's region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca's region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. Hum Brain Mapp 38:1865-1874, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Área de Broca/fisiopatologia , Circulação Cerebrovascular/fisiologia , Gagueira/patologia , Adolescente , Adulto , Mapeamento Encefálico , Área de Broca/irrigação sanguínea , Área de Broca/diagnóstico por imagem , Criança , Pré-Escolar , Óxidos N-Cíclicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gagueira/diagnóstico por imagem , Adulto Jovem
6.
Neuroimage ; 113: 143-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818685

RESUMO

INTRODUCTION: A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL (PCASL) sequence implemented on 3T scanners from three vendors (General Electric Healthcare, Philips Healthcare and Siemens Healthcare) within the same center and with the same subjects. MATERIAL AND METHODS: Fourteen healthy volunteers (50% male, age 26.4±4.7years) were scanned twice on each scanner in an interleaved manner within 3h. Because of differences in gradient and coil specifications, two separate studies were performed with slightly different sequence parameters, with one scanner used across both studies for comparison. Reproducibility was evaluated by means of quantitative cerebral blood flow (CBF) agreement and inter-session variation, both on a region-of-interest (ROI) and voxel level. In addition, a qualitative similarity comparison of the CBF maps was performed by three experienced neuro-radiologists. RESULTS: There were no CBF differences between vendors in study 1 (p>0.1), but there were CBF differences of 2-19% between vendors in study 2 (p<0.001 in most gray matter ROIs) and 10-22% difference in CBF values obtained with the same vendor between studies (p<0.001 in most gray matter ROIs). The inter-vendor inter-session variation was not significantly larger than the intra-vendor variation in all (p>0.1) but one of the ROIs (p<0.001). CONCLUSION: This study demonstrates the possibility to acquire comparable cerebral CBF maps on scanners of different vendors. Small differences in sequence parameters can have a larger effect on the reproducibility of ASL than hardware or software differences between vendors. These results suggest that researchers should strive to employ identical labeling and readout strategies in multi-center ASL studies.


Assuntos
Artérias Cerebrais/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Marcadores de Spin , Adulto , Artefatos , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/normas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/normas , Masculino , Movimento (Física) , Estudos Multicêntricos como Assunto , Perfusão , Padrões de Referência , Reprodutibilidade dos Testes , Adulto Jovem
7.
Hum Brain Mapp ; 34(2): 272-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22451196

RESUMO

Antipsychotic drugs act on the dopaminergic system (first-generation antipsychotics, FGA), but some also directly affect serotonergic function (second-generation antipsychotics, SGA) in the brain. Short and long-term effects of these drugs on brain physiology remain poorly understood. Moreover, it remains unclear whether any physiological effect in the brain may be different for FGAs and SGAs. Immediate (+3.30 h) and different effects of single-dose FGA (haloperidol, 3 mg) and a SGA (aripiprazole, 10 mg) on resting cerebral blood flow (rCBF) were explored in the same 20 healthy volunteers using a pulsed continuous arterial spin labeling (pCASL) sequence (1.5T) in a placebo-controlled, repeated measures design. Both antipsychotics increased striatal rCBF but the effect was greater after haloperidol. Both decreased frontal rCBF, and opposite effects of the drugs were observed in the temporal cortex (haloperidol decreased, aripiprazole increased rCBF) and in the posterior cingulate (haloperidol increased, aripiprazole decreased rCBF). Further increases were evident in the insula, hippocampus, and anterior cingulate after both antipsychotics, in the motor cortex following haloperidol and in the occipital lobe the claustrum and the cerebellum after aripiprazole. Further decreases were observed in the parietal and occipital cortices after aripiprazole. This study suggests that early and different rCBF changes are evident following a single-dose of FGA and SGA. The effects occur in healthy volunteers, thus may be independent from any underlying pathology, and in the same regions identified as structurally and functionally altered in schizophrenia, suggesting a possible relationship between antipsychotic-induced rCBF changes and brain alterations in schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Haloperidol/farmacologia , Piperazinas/farmacologia , Quinolonas/farmacologia , Adolescente , Adulto , Algoritmos , Antipsicóticos/efeitos adversos , Antipsicóticos/sangue , Aripiprazol , Pressão Sanguínea/efeitos dos fármacos , Mapeamento Encefálico , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Método Duplo-Cego , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Piperazinas/efeitos adversos , Piperazinas/sangue , Agitação Psicomotora/psicologia , Quinolonas/efeitos adversos , Quinolonas/sangue , Receptores de Dopamina D2/agonistas , Adulto Jovem
8.
Nature ; 450(7166): 106-9, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17934448

RESUMO

The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Peptídeo YY/farmacologia , Regulação do Apetite/fisiologia , Córtex Cerebral/anatomia & histologia , Estudos Cross-Over , Comportamento Alimentar/fisiologia , Homeostase/efeitos dos fármacos , Humanos , Masculino , Peptídeo YY/sangue , Peptídeo YY/metabolismo , Saciação/efeitos dos fármacos , Saciação/fisiologia
9.
Neuroimage ; 60(2): 1015-24, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22266414

RESUMO

The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for the treatment of attention deficit/hyperactivity disorder (ADHD), but their differential effects on human brain function are poorly understood. PET and blood oxygen level dependent (BOLD) fMRI have been used to study the effects of MPH and BOLD fMRI is beginning to be used to delineate the effects of MPH and ATX in the context of cognitive tasks. The BOLD signal is a proxy for neuronal activity and is dependent on three physiological parameters: regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen and cerebral blood volume. To identify areas sensitive to MPH and ATX and assist interpretation of BOLD studies in healthy volunteers and ADHD patients, it is therefore of interest to characterize the effects of these drugs on rCBF. In this study, we used arterial spin labeling (ASL) MRI to measure rCBF non-invasively in healthy volunteers after administration of MPH, ATX or placebo. We employed multi-class pattern recognition (PR) to discriminate the neuronal effects of the drugs, which accurately discriminated all drug conditions from one another and provided activity patterns that precisely localized discriminating brain regions. We showed common and differential effects in cortical and subcortical brain regions. The clearest differential effects were observed in four regions: (i) in the caudate body where MPH but not ATX increased rCBF, (ii) in the midbrain/substantia nigra and (iii) thalamus where MPH increased and ATX decreased rCBF plus (iv) a large region of cerebellar cortex where ATX increased rCBF relative to MPH. Our results demonstrate that combining ASL and PR yields a sensitive method for detecting the effects of these drugs and provides insights into the regional distribution of brain networks potentially modulated by these compounds.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Metilfenidato/farmacologia , Propilaminas/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Adulto , Cloridrato de Atomoxetina , Humanos , Masculino , Reconhecimento Automatizado de Padrão , Descanso , Adulto Jovem
10.
MAGMA ; 25(2): 163-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22113518

RESUMO

OBJECTIVE: We evaluated the sensitivity of pulsed Arterial Spin Labelling (pASL) for the detection of changes in regional cerebral blood perfusion (CBP) during and after intra-venous (i.v.) infusion of an opioid agonist (fentanyl) and an opioid antagonist (naloxone). MATERIALS AND METHODS: Twenty-three subjects were scanned four times, receiving i.v. infusion of fentanyl, naloxone, placebo and a second fentanyl administration, in four separate scanning sessions in randomised order. End-tidal CO(2), respiration rate and heart rate were recorded continuously throughout each scan. pASL time series were collected using single shot EPI for 15 min (including 5 min of baseline prior to infusion). RESULTS: Significant increases in CBP were detected during and after administration of fentanyl, (when compared to placebo and naloxone), in most areas of high concentration of mu-opioid receptors (thalamus, lingual gyrus, para-hippocampal gyrus, and insula); near-significant increases were also observed in the insula. No increases in perfusion were observed during or after naloxone infusion. No correlation was found between regional rCBF changes and end-tidal CO(2), respiration rate or heart rate. Good reliability was found between the first and second fentanyl sessions but the regions of high reliability did not overlap completely with those of highest perfusion change. CONCLUSION: pASL is a suitable method for examining rapid, dynamic effects of opioid administration on brain physiology.


Assuntos
Encéfalo/irrigação sanguínea , Imagem Ecoplanar/métodos , Fentanila/administração & dosagem , Fluxo Sanguíneo Regional/fisiologia , Marcadores de Spin , Adulto , Analgésicos Opioides/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular , Frequência Cardíaca/efeitos dos fármacos , Humanos , Infusões Intravenosas , Masculino , Naloxona/administração & dosagem , Imagem de Perfusão/métodos , Reprodutibilidade dos Testes
11.
Neuroimage Clin ; 33: 102920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972033

RESUMO

BACKGROUND: Cluster headache is a rare, strictly unilateral, severe episodic primary headache disorder. Due to the unpredictable and episodic nature of the attacks, nitroglycerin has been used to trigger attacks for research purposes to further our understanding of cluster headache pathophysiology. OBJECTIVES: We aimed to identify regions of significant cerebral blood flow (CBF) changes during nitroglycerin triggered cluster headache attacks, using MRI with arterial spin labelling (ASL). METHODS: Thirty-three subjects aged 18-60 years with episodic and chronic cluster headache were recruited and attended an open clinical screening visit without scanning to receive an intravenous nitroglycerin infusion (0.5 µg/kg/min over 20 min). Those for whom nitroglycerin successfully triggered a cluster headache attack, were invited to attend two subsequent scanning visits. They received either single-blinded intravenous nitroglycerin (0.5 µg/kg/min) or an equivalent volume of single-blinded intravenous 0.9% sodium chloride over a 20-minute infusion. Whole-brain CBF maps were acquired using a 3 Tesla MRI scanner pre-infusion and post-infusion. As cluster headache is a rare condition and purely unilateral disorder, an analysis strategy to ensure all the image data corresponded to symptomatology in the same hemisphere, without losing coherence across the group, was adopted. This consisted of spatially normalising all CBF maps to a standard symmetric reference template before flipping the images about the anterior-posterior axis for those CBF maps of subjects who experienced their headache in the right hemisphere. This procedure has been employed in previous studies and generated a group data set with expected features on the left hemisphere only. RESULTS: Twenty-two subjects successfully responded to the nitroglycerin infusion and experienced triggered cluster headache attacks. A total of 20 subjects completed the placebo scanning visit, 20 completed the nitroglycerin scanning visit, and 18 subjects had completed both the nitroglycerin and placebo scanning visits. In a whole-brain analysis, we identified regions of significantly elevated CBF in the medial frontal gyrus, superior frontal gyrus, inferior frontal gyrus and cingulate gyrus, ipsilateral to attack side, in CBF maps acquired during cluster headache attack; compared with data from the placebo session. We also identified significantly reduced CBF in the precuneus, cuneus, superior parietal lobe and occipital lobe contralateral to the attack side. Of particular interest to this field of investigation, both the hypothalamus and ipsilateral ventral pons showed higher CBF in a separate region of interest analysis. CONCLUSION: Our data demonstrate that severe cluster headache leads to significant increases in regional cerebral perfusion, likely to reflect changes in neuronal activity in several regions of the brain, including the hypothalamus and the ventral pons. These data contribute to our understanding of cluster headache pathophysiology; and suggest that non-invasive ASL technology may be valuable in future mechanistic studies of this debilitating condition.


Assuntos
Cefaleia Histamínica , Nitroglicerina , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Circulação Cerebrovascular , Cefaleia Histamínica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Marcadores de Spin , Adulto Jovem
12.
J Cereb Blood Flow Metab ; 42(8): 1451-1462, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35209745

RESUMO

Behavioural responses to hypoglycaemia require coordinated recruitment of broadly distributed networks of interacting brain regions. We investigated hypoglycaemia-related changes in brain connectivity in people without diabetes (ND) and with type 1 diabetes with normal (NAH) or impaired (IAH) hypoglycaemia awareness. Two-step hyperinsulinaemic hypoglycaemic clamps were performed in 14 ND, 15 NAH and 22 IAH participants. BOLD timeseries were acquired at euglycaemia (5.0 mmol/L) and hypoglycaemia (2.6 mmol/L), with symptom and counter-regulatory hormone measurements. We investigated hypoglycaemia-related connectivity changes using established seed regions for the default mode (DMN), salience (SN) and central executive (CEN) networks and regions whose activity is modulated by hypoglycaemia: the thalamus and right inferior frontal gyrus (RIFG). Hypoglycaemia-induced changes in the DMN, SN and CEN were evident in NAH (all p < 0.05), with no changes in ND or IAH. However, in IAH there was a reduction in connectivity between regions within the RIFG (p = 0.001), not evident in the ND or NAH groups. We conclude that hypoglycaemia induces coordinated recruitment of the DMN and SN in diabetes with preserved hypoglycaemia awareness which is absent in IAH and ND. Changes in connectivity in the RIFG, a region associated with attentional modulation, may be key in impaired hypoglycaemia awareness.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Encéfalo/metabolismo , Humanos , Hipoglicemiantes , Imageamento por Ressonância Magnética , Córtex Pré-Frontal
13.
Hum Brain Mapp ; 32(1): 71-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20336685

RESUMO

It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Desidratação/patologia , Desidratação/fisiopatologia , Adolescente , Análise de Variância , Temperatura Corporal , Mapeamento Encefálico , Cognição/fisiologia , Estudos Cross-Over , Função Executiva/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tempo de Reação/fisiologia
14.
J Magn Reson Imaging ; 34(5): 1125-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21928386

RESUMO

PURPOSE: To investigate if placental volume in the second trimester of pregnancy is related to uterine artery blood flow and neonatal birth weight. MATERIALS AND METHODS: In 83 singleton pregnancies at 24-29 weeks' gestation, uterine artery pulsatility index (PI) was measured by Doppler ultrasound and placental volume was calculated from images obtained by magnetic resonance imaging (MRI) at 1.5T. The significance of the association between placental volume, uterine artery PI, and birth weight was examined. RESULTS: In 37 normal pregnancies resulting in delivery of neonates with birth weight at or above the 10th percentile, the median placental volume increased with gestational age from 363 cm(3) at 24 weeks to 515 cm(3) at 29 weeks. In 46 pregnancies that resulted in delivery of small for gestational age (SGA) neonates with birth weight below the 10th percentile the median placental volume, corrected for gestational age, was significantly decreased by 120 cm(3) (P < 0.0001) and median uterine artery PI was increased (1.87 vs. 1.59, P < 0.0001). There were significant associations between placental volume and both uterine artery PI (r = -0.677, P < 0.0001) and birth weight percentile (r = 0.658, P < 0.0001). CONCLUSION: Placental volume during the second trimester is smaller in pregnancies that subsequently deliver SGA neonates and the measurement is related to placental perfusion.


Assuntos
Retardo do Crescimento Fetal/patologia , Imageamento por Ressonância Magnética/métodos , Placenta/patologia , Adulto , Peso ao Nascer , Velocidade do Fluxo Sanguíneo , Feminino , Retardo do Crescimento Fetal/diagnóstico , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Variações Dependentes do Observador , Gravidez , Ultrassonografia Pré-Natal/métodos , Artéria Uterina/patologia
15.
Diabetes Care ; 44(2): 533-540, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33328282

RESUMO

OBJECTIVE: Impaired awareness of hypoglycemia (IAH) in type 1 diabetes (T1D) is a major risk factor for severe hypoglycemia (SH) and is associated with atypical responses to hypoglycemia in brain regions involved in arousal, decision making, and memory. Whether restoration of hypoglycemia awareness alters these responses is unknown. We sought to investigate the impact of awareness restoration on brain responses to hypoglycemia. RESEARCH DESIGN AND METHODS: Twelve adults with T1D and IAH underwent pseudocontinuous arterial spin labeling functional MRI during a hypoglycemic clamp (5-2.6 mmol/L) before and after a hypoglycemia avoidance program of structured education (Dose Adjustment for Normal Eating), specialist support, and sensor-augmented pump therapy (Medtronic MiniMed 640G). Hypoglycemic cerebral blood flow (CBF) responses were compared pre- and postintervention using predefined region-of-interest analysis of the thalamus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and hippocampus. RESULTS: Postintervention, Gold and Clarke scores fell (6.0 ± 1.0 to 4.0 ± 1.6, P = 0.0002, and 5.7 ± 1.7 to 3.4 ± 1.8, P = 0.0008, respectively), SH rates reduced (1.5 ± 2 to 0.3 ± 0.5 episodes per year, P = 0.03), hypoglycemic symptom scores increased (18.8 ± 6.3 to 27.3 ± 12.7, P = 0.02), and epinephrine responses did not change (P = 0.2). Postintervention, hypoglycemia induced greater increases in ACC CBF (P = 0.01, peak voxel coordinates [6, 40, -2]), while thalamic and OFC activity did not change. CONCLUSIONS: Increased blood flow is seen within brain pathways involved in internal self-awareness and decision making (ACC) after restoration of hypoglycemia awareness, suggesting partial recovery of brain responses lost in IAH. Resistance of frontothalamic networks, involved in arousal and emotion processing, may explain why not all individuals with IAH achieve awareness restoration with education and technology alone.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adulto , Conscientização , Glicemia , Encéfalo/diagnóstico por imagem , Humanos , Hipoglicemiantes , Insulina
16.
J Cereb Blood Flow Metab ; 40(4): 787-798, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31006309

RESUMO

Brain responses to low plasma glucose may be key to understanding the behaviors that prevent severe hypoglycemia in type 1 diabetes. This study investigated the impact of long duration, hypoglycemia aware type 1 diabetes on cerebral blood flow responses to hypoglycemia. Three-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging was performed in 15 individuals with type 1 diabetes and 15 non-diabetic controls during a two-step hyperinsulinemic glucose clamp. Symptom, hormone, global cerebral blood flow and regional cerebral blood flow responses to hypoglycemia were measured. Epinephrine release during hypoglycemia was attenuated in type 1 diabetes, but symptom score rose comparably in both groups. A rise in global cerebral blood flow did not differ between groups. Regional cerebral blood flow increased in the thalamus and fell in the hippocampus and temporal cortex in both groups. Type 1 diabetes demonstrated lesser anterior cingulate cortex activation; however, this difference did not survive correction for multiple comparisons. Thalamic cerebral blood flow change correlated with autonomic symptoms, and anterior cingulate cortex cerebral blood flow change correlated with epinephrine response across groups. The thalamus may thus be involved in symptom responses to hypoglycemia, independent of epinephrine action, while anterior cingulate cortex activation may be linked to counterregulation. Activation of these regions may have a role in hypoglycemia awareness and avoidance of problematic hypoglycemia.


Assuntos
Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Epinefrina/sangue , Hipoglicemia/fisiopatologia , Tálamo/irrigação sanguínea , Adolescente , Adulto , Glicemia/análise , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Feminino , Glucose/administração & dosagem , Humanos , Hipoglicemia/sangue , Hipoglicemia/diagnóstico por imagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Adulto Jovem
17.
Neuroimage ; 45(3): 758-68, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19166942

RESUMO

The intra-class class correlation coefficient (ICC) is a prominent statistic to measure test-retest reliability of fMRI data. It can be used to address the question of whether regions of high group activation in a first scan session will show preserved subject differentiability in a second session. With this purpose, we present a method that extends voxel-wise ICC analysis. We show that voxels with high group activation have more probability of being reliable, if a subsequent session is performed, than typical voxels across the brain or across white matter. We also find that the existence of some voxels with high ICC but low group activation can be explained by stable signals across sessions that poorly fit the HRF model. At a region of interest level, we show that our voxel-wise ICC calculation is more robust than previous implementations under variations of smoothing and cluster size. The method also allows formal comparisons between the reliabilities of given brain regions; aimed at establishing which ROIs discriminate best between individuals. The method is applied to an auditory and a verbal working memory task. A reliability toolbox for SPM5 is provided at http://brainmap.co.uk.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Memória/fisiologia , Adulto , Algoritmos , Humanos , Masculino , Reprodutibilidade dos Testes
18.
Diabetes Care ; 42(11): 2127-2135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31455689

RESUMO

OBJECTIVE: Impaired awareness of hypoglycemia (IAH) affects one-quarter of adults with type 1 diabetes and significantly increases the risk of severe hypoglycemia. Differences in regional brain responses to hypoglycemia may contribute to the susceptibility of this group to problematic hypoglycemia. This study investigated brain responses to hypoglycemia in hypoglycemia aware (HA) and IAH adults with type 1 diabetes, using three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) functional MRI to measure changes in regional cerebral blood flow (CBF). RESEARCH DESIGN AND METHODS: Fifteen HA and 19 IAH individuals underwent 3D pCASL functional MRI during a two-step hyperinsulinemic glucose clamp. Symptom, hormone, global, and regional CBF responses to hypoglycemia (47 mg/dL [2.6 mmol/L]) were measured. RESULTS: In response to hypoglycemia, total symptom score did not change in those with IAH (P = 0.25) but rose in HA participants (P < 0.001). Epinephrine, cortisol, and growth hormone responses to hypoglycemia were lower in the IAH group (P < 0.05). Hypoglycemia induced a rise in global CBF (HA P = 0.01, IAH P = 0.04) but was not different between groups (P = 0.99). IAH participants showed reduced regional CBF responses within the thalamus (P = 0.002), right lateral orbitofrontal cortex (OFC) (P = 0.002), and right dorsolateral prefrontal cortex (P = 0.036) and a lesser decrease of CBF in the left hippocampus (P = 0.023) compared with the HA group. Thalamic and right lateral OFC differences survived Bonferroni correction. CONCLUSIONS: Responses to hypoglycemia of brain regions involved in arousal, decision making, and reward are altered in IAH. Changes in these pathways may disrupt IAH individuals' ability to recognize hypoglycemia, impairing their capacity to manage hypoglycemia effectively and benefit fully from conventional therapeutic pathways to restore awareness.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/irrigação sanguínea , Tomada de Decisões/fisiologia , Diabetes Mellitus Tipo 1/psicologia , Hipoglicemia/psicologia , Adulto , Conscientização , Glicemia/metabolismo , Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemia/diagnóstico por imagem , Hipoglicemia/etiologia , Imageamento por Ressonância Magnética/métodos , Masculino
19.
Biol Psychiatry ; 85(7): 584-595, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711191

RESUMO

BACKGROUND: Our aim was to assess resting cerebral blood flow (rCBF) in children and adults with autism spectrum disorder (ASD). METHODS: We acquired pulsed arterial spin labeling magnetic resonance imaging data in 44 generally high-functioning participants with ASD simplex and 66 typically developing control subjects with comparable mean full-scale IQs. We compared rCBF values voxelwise across diagnostic groups and assessed correlations with symptom scores. We also assessed the moderating influences of participant age, sex, and IQ on our findings and the correlations of rCBF with N-acetylaspartate metabolite levels. RESULTS: We detected significantly higher rCBF values throughout frontal white matter and subcortical gray matter in participants with ASD. rCBF correlated positively with socialization deficits in participants with ASD in regions where hyperperfusion was greatest. rCBF declined with increasing IQ in the typically developing group, a correlation that was absent in participants with ASD, whose rCBF values were elevated across all IQ levels. rCBF in the ASD group correlated inversely with N-acetylaspartate metabolite levels throughout the frontal white matter, with greater rCBF accompanying lower and increasingly abnormal N-acetylaspartate levels relative to those of typically developing control subjects. CONCLUSIONS: These findings taken together suggest the presence of altered metabolism, likely of mitochondrial origin, and dysfunctional maintenance processes that support axonal functioning in ASD. These disturbances in turn likely reduce neural efficiency for cognitive and social functioning and trigger compensatory responses from supporting glial cells, which subsequently increase rCBF to affected white matter. These findings, if confirmed, suggest cellular and molecular targets for novel therapeutics that address axonal pathology and bolster glial compensatory responses in ASD.


Assuntos
Ácido Aspártico/análogos & derivados , Transtorno do Espectro Autista , Circulação Cerebrovascular/fisiologia , Lobo Frontal , Substância Cinzenta , Substância Branca , Adolescente , Adulto , Ácido Aspártico/metabolismo , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Criança , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Lobo Frontal/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Marcadores de Spin , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/fisiopatologia , Adulto Jovem
20.
Neuroimage ; 42(1): 36-41, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18511306

RESUMO

The neurobiological basis for attention deficit hyperactivity disorder (ADHD) has not yet been fully established, although there is a growing body of evidence pointing to functional and structural abnormalities involving the basal ganglia, cerebellum, and regions of frontal grey matter. The purpose of this study was to investigate regional cerebral perfusion in adults with ADHD and age-matched control subjects, and to assess the perfusion response to stimulant treatment in the ADHD group using a non-invasive magnetic resonance perfusion imaging technique. Whole-brain cerebral perfusion images were acquired from nine right-handed male patients with ADHD and eleven age-matched control subjects using a continuous arterial spin labelling (CASL) technique. The ADHD group was assessed once on their normal treatment and once after withdrawing from treatment for at least one week. An automated voxel-based analysis was used to identify regions where the cerebral perfusion differed significantly between the ADHD and control groups, and where the perfusion altered significantly with stimulant treatment. Regional cerebral perfusion was increased in the ADHD group in the left caudate nucleus, frontal and parietal regions. Psychomotor stimulant treatment acted to normalise perfusion in frontal cortex and the caudate nucleus with additional decreases in parietal and parahippocampal regions. These findings highlight the potential sensitivity of non-invasive perfusion MRI techniques like CASL in the evaluation of perfusion differences due to illness and medication treatment, and provide further evidence that persistence of ADHD symptomatology into adulthood is accompanied by abnormalities in frontal and striatal brain regions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiopatologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Circulação Cerebrovascular/efeitos dos fármacos , Adulto , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa