Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31061158

RESUMO

Despite appropriate antibiotic therapy, pneumococcal meningitis (PM) is associated with a case fatality rate of up to 30% in high-income countries. Survivors often suffer from severe lifelong disabilities. An excessive inflammatory reaction drives the pathophysiology, leading to brain damage and neurologic sequelae. We aimed to improve the outcome of experimental PM by simultaneously targeting different pathophysiological mechanisms with combined adjunctive therapies previously shown to be neuroprotective. In vitro, the anti-inflammatory effects of doxycycline and daptomycin were evaluated on primary rat astroglial cells stimulated with Streptococcus pneumoniae Eleven-day-old infant Wistar rats were infected intracisternally with S. pneumoniae and randomized for treatment with ceftriaxone or combination adjuvant therapy consisting of ceftriaxone, daptomycin, and doxycycline. During acute PM, combined-adjuvant therapy with ceftriaxone, daptomycin, and doxycycline increased the survival rate from 64.1% to 85.8% (P < 0.01) and alleviated weight loss compared to ceftriaxone monotherapy (P < 0.01). Levels of inflammatory cytokines were significantly reduced by combined-adjuvant therapy in vitro (P < 0.0001) and in cerebrospinal fluid in vivo (P < 0.05). In infected animals treated with combined adjunctive therapy, cortical damage was significantly reduced (P < 0.05), and animals showed a trend toward better hearing capacity 3 weeks after the infection (P = 0.089), an effect which was significant in mildly infected animals (48 decibels [dB] versus 67.22 dB; P < 0.05). These mildly infected animals showed significantly reduced cochlear fibrous occlusion (P < 0.01). By combining nonbacteriolytic daptomycin and anti-inflammatory doxycycline with ceftriaxone, the previously reported beneficial effects of the drugs were cumulated and identified the triple-antibiotic therapy as a promising therapeutic option for pediatric PM.


Assuntos
Ceftriaxona/uso terapêutico , Daptomicina/uso terapêutico , Doxiciclina/uso terapêutico , Meningite Pneumocócica/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Perda Auditiva/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade
2.
J Neuroinflammation ; 16(1): 156, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351490

RESUMO

BACKGROUND: Pneumococcal meningitis is associated with high risk of neurological sequelae such as cognitive impairment and hearing loss. These sequelae are due to parenchymal brain and inner ear damage primarily induced by the excessive inflammatory reaction in response to bacterial brain invasion. Metformin-a biguanide drug to treat diabetes mellitus type 2-was recently found to suppress neuroinflammation and induce neuroregeneration. This study evaluated the effect of metformin adjunctive to antibiotics on neuroinflammation, brain and inner ear damage, and neurofunctional outcome in experimental pediatric pneumococcal meningitis. METHODS: Eleven-day-old Wistar rats were infected intracisternally with 5.22 ± 1.27 × 103 CFU Streptococcus pneumoniae and randomized for treatment with metformin (50 mg/kg, i.p., once daily for 3 weeks) plus ceftriaxone (100 mg/kg, i.p., bid, n = 61) or ceftriaxone monotherapy (n = 79). Cortical damage and hippocampal apoptosis were evaluated histomorphometrically 42 h post infection. Cerebrospinal fluid cytokine levels were analyzed during acute infection. Five weeks post infection, auditory brainstem responses were measured to determine hearing thresholds. Spiral ganglion neuron density and abundance of recently proliferated and integrated hippocampal granule neurons were assessed histologically. Additionally, the anti-inflammatory effect of metformin was studied in primary rat astroglial cells in vitro. RESULTS: Upon pneumococcal infection, metformin treatment significantly reduced levels of inflammatory cytokines and nitric oxide production in cerebrospinal fluid and in astroglial cell cultures in vitro (p < 0.05). Compared to animals receiving ceftriaxone monotherapy, adjunctive metformin significantly reduced cortical necrosis (p < 0.02) during acute infection and improved median click-induced hearing thresholds (60 dB vs. 100 dB, p < 0.002) 5 weeks after infection. Adjuvant metformin significantly improved pure tone hearing thresholds at all assessed frequencies compared to ceftriaxone monotherapy (p < 0.05) and protected from PM-induced spiral ganglion neuron loss in the inner ear (p < 0.05). CONCLUSION: Adjuvant metformin reduces brain injury during pneumococcal meningitis by decreasing the excessive neuroinflammatory response. Furthermore, it protects spiral ganglion neurons in the inner ear and improves hearing impairments after experimental pneumococcal meningitis. These results identify adjuvant metformin as a promising therapeutic option to improve the outcome after pediatric pneumococcal meningitis.


Assuntos
Antibacterianos/uso terapêutico , Ceftriaxona/uso terapêutico , Perda Auditiva/tratamento farmacológico , Meningite Pneumocócica/tratamento farmacológico , Metformina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Apoptose/efeitos dos fármacos , Ceftriaxona/administração & dosagem , Citocinas/líquido cefalorraquidiano , Modelos Animais de Doenças , Quimioterapia Combinada , Perda Auditiva/líquido cefalorraquidiano , Hipocampo/efeitos dos fármacos , Meningite Pneumocócica/líquido cefalorraquidiano , Metformina/administração & dosagem , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Wistar , Gânglio Espiral da Cóclea/efeitos dos fármacos , Resultado do Tratamento
3.
Nat Commun ; 15(1): 6145, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034325

RESUMO

Parasitic diseases, particularly malaria (caused by Plasmodium falciparum) and theileriosis (caused by Theileria spp.), profoundly impact global health and the socioeconomic well-being of lower-income countries. Despite recent advances, identifying host metabolic proteins essential for these auxotrophic pathogens remains challenging. Here, we generate a novel metabolic model of human hepatocytes infected with P. falciparum and integrate it with a genome-wide CRISPR knockout screen targeting Theileria-infected cells to pinpoint shared vulnerabilities. We identify key host metabolic enzymes critical for the intracellular survival of both of these lethal hemoparasites. Remarkably, among the metabolic proteins identified by our synergistic approach, we find that host purine and heme biosynthetic enzymes are essential for the intracellular survival of P. falciparum and Theileria, while other host enzymes are only essential under certain metabolic conditions, highlighting P. falciparum's adaptability and ability to scavenge nutrients selectively. Unexpectedly, host porphyrins emerge as being essential for both parasites. The shared vulnerabilities open new avenues for developing more effective therapies against these debilitating diseases, with the potential for broader applicability in combating apicomplexan infections.


Assuntos
Sistemas CRISPR-Cas , Hepatócitos , Malária Falciparum , Plasmodium falciparum , Theileria , Plasmodium falciparum/genética , Humanos , Hepatócitos/parasitologia , Hepatócitos/metabolismo , Malária Falciparum/parasitologia , Theileria/genética , Genômica/métodos , Heme/metabolismo , Interações Hospedeiro-Parasita/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Animais , Técnicas de Inativação de Genes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa