Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(5): 934-943, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984801

RESUMO

Adenine base editors (ABEs), which are generally engineered adenosine deaminases and Cas variants, introduce site-specific A-to-G mutations for agronomic trait improvement. However, notably varying editing efficiencies, restrictive requirements for protospacer-adjacent motifs (PAMs) and a narrow editing window greatly limit their application. Here, we developed a robust high-efficiency ABE (PhieABE) toolbox for plants by fusing an evolved, highly active form of the adenosine deaminase TadA8e and a single-stranded DNA-binding domain (DBD), based on PAM-less/free Streptococcus pyogenes Cas9 (SpCas9) nickase variants that recognize the PAM NGN (for SpCas9n-NG and SpGn) or NNN (for SpRYn). By targeting 29 representative targets in rice and assessing the results, we demonstrate that PhieABEs have significantly improved base-editing activity, expanded target range and broader editing windows compared to the ABE7.10 and general ABE8e systems. Among these PhieABEs, hyper ABE8e-DBD-SpRYn (hyABE8e-SpRY) showed nearly 100% editing efficiency at some tested sites, with a high proportion of homozygous base substitutions in the editing windows and no single guide RNA (sgRNA)-dependent off-target changes. The original sgRNA was more compatible with PhieABEs than the evolved sgRNA. In conclusion, the DBD fusion effectively promotes base-editing efficiency, and this novel PhieABE toolbox should have wide applications in plant functional genomics and crop improvement.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Adenina , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta
2.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887335

RESUMO

CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5'-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants.


Assuntos
Edição de Genes , Oryza , Sistemas CRISPR-Cas/genética , Desoxirribonuclease I/genética , Escherichia coli/genética , Guanina/análogos & derivados , Humanos , Oryza/genética
3.
J Integr Plant Biol ; 63(9): 1611-1619, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411422

RESUMO

The development of clustered regularly interspaced palindromic repeats (CRISPR)-associated protein (Cas) variants with a broader recognition scope is critical for further improvement of CRISPR/Cas systems. The original Cas9 protein from Streptococcus canis (ScCas9) can recognize simple NNG-protospacer adjacent motif (PAM) targets, and therefore possesses a broader range relative to current CRISPR/Cas systems, but its editing efficiency is low in plants. Evolved ScCas9+ and ScCas9++ variants have been shown to possess higher editing efficiencies in human cells, but their activities in plants are currently unknown. Here, we utilized codon-optimized ScCas9, ScCas9+ and ScCas9++ and a nickase variant ScCas9n++ to systematically investigate genome cleavage activity and cytidine base editing efficiency in rice (Oryza sativa L.). This analysis revealed that ScCas9++ has higher editing efficiency than ScCas9 and ScCas9+ in rice. Furthermore, we fused the evolved cytidine deaminase PmCDA1 with ScCas9n++ to generate a new evoBE4max-type cytidine base editor, termed PevoCDA1-ScCas9n++ . This base editor achieved stable and efficient multiplex-site base editing at NNG-PAM sites with wider editing windows (C- 1 -C17 ) and without target sequence context preference. Multiplex-site base editing of the rice genes OsWx (three targets) and OsEui1 (two targets) achieved simultaneous editing and produced new rice germplasm. Taken together, these results demonstrate that ScCas9++ represents a crucial new tool for improving plant editing.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Oryza/genética , Streptococcus/genética
6.
Comput Struct Biotechnol J ; 20: 4009-4014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983232

RESUMO

CRISPR-dependent base editors enable direct nucleotide conversion without the introduction of double-strand DNA break or donor DNA template, thus expanding the CRISPR toolbox for genetic manipulation. However, designing guide RNAs (gRNAs) for base editors to enable gene correction or inactivation is more complicated than using the CRISPR system for gene disruption. Here, we present a user-friendly web tool named BEtarget dedicated to the design of gRNA for base editing. It is currently supported by 46 plant reference genomes and 5 genomes of non-plant model organisms. BEtarget supports the design of gRNAs with different types of protospacer adjacent motifs (PAM) and integrates various functions, including automatic identification of open reading frame, prediction of potential off-target sites, annotation of codon change, and assessment of gRNA quality. Moreover, the program provides an interactive interface for users to selectively display information about the desired target sites. In brief, we have developed a flexible and versatile web-based tool to simplify complications associated with the design of base editing technology. BEtarget is freely accessible at https://skl.scau.edu.cn/betarget/.

7.
Mol Plant ; 11(12): 1440-1448, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30296601

RESUMO

Carotenoids are important phytonutrients with antioxidant properties, and are widely used in foods and feedstuffs as supplements. Astaxanthin, a red-colored ketocarotenoid, has strong antioxidant activity and thus can benefit human health. However, astaxanthin is not produced in most higher plants. Here we report the bioengineering of astaxanthin biosynthesis in rice endosperm by introducing four synthetic genes, sZmPSY1, sPaCrtI, sCrBKT, and sHpBHY, which encode the enzymes phytoene synthase, phytoene desaturase, ß-carotene ketolase, and ß-carotene hydroxylase, respectively. Transgneic overexpression of two (sZmPSY1 and sPaCrtI), three (sZmPSY1, sPaCrtI and sCrBKT), and all these four genes driven by rice endosperm-specific promoters established the carotenoid/ketocarotenoid/astaxanthin biosynthetic pathways in the endosperm and thus resulted in various types of germplasm, from the yellow-grained ß-carotene-enriched Golden Rice to orange-red-grained Canthaxanthin Rice and Astaxanthin Rice, respectively. Grains of Astaxanthin Rice were enriched with astaxanthin in the endosperm and had higher antioxidant activity. These results proved that introduction of a minimal set of four transgenes enables de novo biosynthesis of astaxanthin in the rice endosperm. This work provides a successful example for synthetic biology in plants and biofortification in crops; the biofortified rice products generated by this study could be consumed as health-promoting foods and processed to produce dietary supplements.


Assuntos
Endosperma/metabolismo , Engenharia Genética , Oryza/genética , Oryza/metabolismo , Antioxidantes/metabolismo , Biofortificação , Cantaxantina/biossíntese , Cantaxantina/metabolismo , Plantas Geneticamente Modificadas , Xantofilas/biossíntese , Xantofilas/metabolismo , beta Caroteno/biossíntese , beta Caroteno/metabolismo
8.
Mol Plant ; 10(7): 918-929, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28666688

RESUMO

Anthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway. In this study, we developed a high-efficiency vector system for transgene stacking and used it to engineer anthocyanin biosynthesis in rice endosperm. We made a construct containing eight anthocyanin-related genes (two regulatory genes from maize and six structural genes from Coleus) driven by the endosperm-specific promoters,plus a selectable marker and a gene for marker excision. Transformation of rice with this construct generated a novel biofortified germplasm "Purple Endosperm Rice" (called "Zijingmi" in Chinese), which has high anthocyanin contents and antioxidant activity in the endosperm. This anthocyanin production results from expression of the transgenes and the resulting activation (or enhancement) of expression of 13 endogenous anthocyanin biosynthesis genes that are silenced or expressed at low levels in wild-type rice endosperm. This study provides an efficient, versatile toolkit for transgene stacking and demonstrates its use for successful engineering of a sophisticated biological pathway, suggesting the potential utility of this toolkit for synthetic biology and improvement of agronomic traits in plants.


Assuntos
Antocianinas/biossíntese , Endosperma/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Endosperma/genética , Engenharia Genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa