Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biochem Biophys Res Commun ; 706: 149766, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484568

RESUMO

Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based ß-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Animais , Humanos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Ligantes , Células HEK293 , Lisofosfolipídeos/farmacologia
2.
Small ; 20(25): e2307986, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189535

RESUMO

The volume collapse and slow kinetics reaction of anode materials are two key issues for sodium ion batteries (SIBs). Herein, an "embryo" strategy is proposed for synthesis of nanorod-embedded MoO2/MoS2/C network nanoarchitecture as anode for SIBs with high-rate performance. Interestingly, L-cysteine which plays triple roles including sulfur source, reductant, and carbon source can be utilized to produce the sulfur vacancy-enriched heterostructure. Specifically, L-cysteine can combine with metastable monoclinic MoO3 nanorods at room temperature to encapsulate the "nutrient" of MoOx analogues (MoO2.5(OH)0.5 and MoO3·0.5H2O) and hydrogen-deficient L-cysteine in the "embryo" precursor affording for subsequent in situ multistep heating treatment. The resultant MoO2/MoS2/C presents a high-rate capability of 875 and 420 mAh g-1 at 0.5 and 10 A g-1, respectively, which are much better than the MoS2-based anode materials reported by far. Finite element simulation and analysis results verify that the volume expansion can be reduced to 42.8% from 88.8% when building nanorod-embedded porous network structure. Theoretical calculations reveal that the sulfur vacancies and heterointerface engineering can promote the adsorption and migration of Na+ leading to highly enhanced thermodynamic and kinetic reaction. The work provides an efficient approach to develop advanced electrode materials for energy storage.

3.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176077

RESUMO

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

4.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38387089

RESUMO

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

5.
Phys Chem Chem Phys ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150538

RESUMO

The sliding ferroelectrics formed by rhombohedral-stacked transition metal dichalcogenides (R-TMDs) greatly broaden the ferroelectric candidate materials. However, the weak ferroelectricity and many failure behaviors (such as irreversible lattice strains or defects) regulated by applied stimuli hinder their application. Here we systematically explore the interface electronic and transport properties of R-MoS2-based van der Waals heterojunctions (vdWHJs) by first-principles calculations. We find that the polarization and the band non-degeneracy of 2R-MoS2 increase with decreasing interlayer distance (d1). Moreover, the polarization direction of graphene (Gra)/2R-MoS2 P↑ state can be switched with a small increase in d1 (about 0.124 Å) due to the weakening of the polarization field (Ep) by a built-in electric field (Ei). The equilibrium state of superposition (|Ep + Ei|) or weakening (|Ep - Ei|) can be modulated by interface distances, which prompts vertical strain-regulated polarization or Schottky barriers. Furthermore, Gra/2R-MoS2 and Gra/R-MoS2/WS2 vdW ferroelectric tunneling junctions (FTJs) demonstrate ultra-high tunneling electroresistance (TER) ratios of 1.55 × 105 and 2.61 × 106, respectively, as the polarization direction switches. Our results provide an avenue for the design of future R-TMD vdW FTJs.

6.
Sci Rep ; 14(1): 3670, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351185

RESUMO

Clamping bushing structure is an internode connection mechanism designed for the standard section of tubular truss tower. In this paper, the clamping bushing structure of the connecting mechanism of super-large tower crane is taken as the research object, a three-dimensional model of clamping bushing structure is established and imported into ABAQUS, and its multi-body contact model is further constructed to study the contact and bearing relationship of the structure under multiple working conditions, and the accuracy of the calculation results of the model is verified by the experimental stress test under tensile working conditions. In addition, this study is based on the control variable method, and through the design of orthogonal test table, the influence degree of five variable parameters of clamping bushing on the bearing capacity of the structure is investigated. Finally, through the range analysis, the optimal horizontal combination of variables and parameters of clamping bushing structure is obtained, and the optimal matching relationship between the shape of the tower connecting mechanism and the bearing capacity is obtained. The results show that, compared with the original model, the stress concentration at the most dangerous section of the optimized joint and the bushing is obviously alleviated, in which the stress peaks of the upper and lower joints are kept below 500 MPa, and the stress peaks of the bushing groove are also reduced to between 573 and 722 MPa. Moreover, the designed and optimized lower joint can reduce the maximum equivalent plastic strain of the joint root circumference by 56.05% under the original maximum tensile condition, and the overall distribution trend of equivalent plastic strain is more uniform, and a more reliable structural design is obtained, which plays an important guiding role in the design, optimization and analysis of the connecting mechanism of the tower body of large tower crane.

7.
Nanoscale ; 16(11): 5504-5520, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410877

RESUMO

Photodetectors integrating substrates and semiconductor materials are increasingly attractive for applications in optical communication, optical sensing, optical computing, and military owing to the unique optoelectronic properties of semiconductor materials. However, it is still a challenge to realize high-performance photodetectors by only integrating substrates and semiconductor materials because of the limitation of incident light in contact with sensitive materials. In recent years, waveguides such as silicon (Si) and silicon nitride (Si3N4) have attracted extensive attention owing to their unique optical properties. Waveguides can be easily hetero-integrated with semiconductor materials, thus providing a promising approach for realizing high-performance photodetectors. Herein, we review recent advances in photodetectors integrating waveguides in two parts. The first involves the waveguide types and semiconductor materials commonly used to fabricate photodetectors, including Si, Si3N4, gallium nitride, organic waveguides, graphene, and MoTe2. The second involves the photodetectors of different wavelengths that integrate waveguides, ranging from ultraviolet to infrared. These hybrid photodetectors integrating waveguides and semiconductor materials provide an alternative way to realize multifunctional and high-performance photonic integrated chips and circuits.

8.
Heliyon ; 10(2): e24598, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312602

RESUMO

Background: Diabetic foot ulcers (DFUs) are a severe complication of diabetes. Persistent inflammation and impaired vascularization present considerable challenges in tissue wound healing. The aim of this study was to identify the crucial regulators of DFU wound healing and investigate their specific mechanisms in DFU. Methods: DFU RNA sequencing data were obtained to identify crucial feature genes. The expression levels of the feature genes and their corresponding microRNAs (miRNAs) were verified in clinical samples. Subsequently, the expression of CD68 was determined in DFU and non-diabetic foot skin samples. RAW 264.7 cells were treated with advanced glycation end products (AGEs) to determine their viability and apoptosis. Finally, the roles of the selected crucial genes and their corresponding miRNAs were investigated using in vitro experiments and a mouse model of diabetes. Results: Bioinformatic analysis showed that five crucial feature genes (CORO1A, CSF1R, CTSH, NFE2L3, and SLC16A10) were associated with DFU wound healing. The expression validation showed that miR-361-3p-CSF1R had a significant negative correlation and was thus selected for further experiments. AGEs significantly inhibited the viability of RAW 264.7 cells and enhanced their apoptosis; furthermore, the AGEs significantly downregulated CSF1R and increased miR-361-3p levels compared with the control cells. Additionally, inhibition of miR-361-3p decreased the cell apoptosis caused by AGEs and increased the levels of p-AKT/AKT and p-PI3K/PI3K, whereas CSF1R knockdown reversed the effects of miR-361-3p. In vivo experiments showed that miR-361-3p inhibition promoted wound healing in diabetic mice and regulated PI3K/AKT levels. Conclusions: AGEs may regulate macrophage apoptosis via the miR-361-3p/CSF1R axis and PI3K/AKT pathway, thereby influencing DFU wound healing.

9.
Curr Probl Cardiol ; 49(1 Pt B): 102088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716542

RESUMO

Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Doenças Vasculares , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Doenças Vasculares/prevenção & controle
10.
J Econ Entomol ; 117(1): 311-322, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181509

RESUMO

Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is an agricultural pest threatening various horticultural crops worldwide. Inducing plant resistance is an ecologically beneficial and potentially effective method for controlling F. occidentalis. As an essential nutrient element, exogenous calcium enhances plant-induced resistance. This study investigated the effects of CaCl2 on the secondary metabolites of kidney bean plants and detoxifying and digestive enzymes in F. occidentalis. We found that treatment of plants and treatment time and also the interactions of the 2 factors significantly affected secondary metabolites contents (tannin, flavonoids, total phenol, alkaloid, and lignin) of kidney bean leaves, which indicated that that the effect of treatment of plants on secondary metabolites varied with treatment time. Moreover, when thrips fed on CaCl2-treated plants, the activities of detoxifying enzymes, enzymes glutathione S-transferase and cytochrome P450 substantially increased compared to those in which thrips fed on control plants. However, the activity of carboxylesterase significantly decreased. The detoxifying enzyme genes CL992.contig6, CYP4PN1, and CYP4PJ2 were significantly upregulated at 24 and 48 h. The activities of digestive enzymes (α-amylase, chymotrypsin, and lipase) increased substantially in F. occidentalis. The digestive enzyme gene, FoAMY-1, was significantly upregulated at 24 and 48 h after treatment. The pupation rate and pupal weight of F. occidentalis were significantly reduced. The results indicated that exogenous CaCl2-induced metabolic changes in kidney bean plants and altered the enzymatic activity and development of F. occidentalis that fed upon them.


Assuntos
Phaseolus , Tisanópteros , Animais , Tisanópteros/fisiologia , Cálcio/farmacologia , Cloreto de Cálcio/farmacologia , Produtos Agrícolas
11.
Curr Probl Cardiol ; 49(1 Pt C): 102161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37875209

RESUMO

ABCG1 is an essential protein involved in the efflux of intracellular cholesterol to the extracellular space, thus playing a critical role in reducing cholesterol accumulation in neighboring tissues. Bibliometric analysis pertains to the interdisciplinary field of quantitative examination of diverse documents using mathematical and statistical techniques. It integrates the investigation of structural and temporal patterns in academic publications with an exploration of subject focus and forms of uncertainty. This research paper examines the historical evolution, current areas of interest, and future development trends of ABCG1 through bibliometric analysis. This study aims to offer readers insights into the research status and emerging trends of ABCG1, thereby assisting researchers in the exciting field to explore novel research avenues. Following rigorous selection, research on ABCG1 has remained highly active over the past two decades. ABCG1 has even started to emerge in previously unrelated fields, such as the field of cancer research. According to the analysis conducted by Citespace, a lot of keywords and influential citations were identified. ABCG1 has been found to establish a connection between cancer and cardiovascular disease, highlighting their interrelationship. This review aims to assist readers who have limited familiarity with ABCG1 research in gaining a rapid understanding of its developmental trajectory. Additionally, it aims to offer researchers potential areas of focus for future studies related to ABCG1.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Colesterol , Humanos , Colesterol/metabolismo
12.
World J Gastrointest Surg ; 16(5): 1320-1327, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817287

RESUMO

BACKGROUND: Surgery for obese patients carries a higher risk of anesthesia complications compared with surgery for nonobese patients. Thus, a safe and effective anesthesia strategy is necessary to improve the medical experience of such patients and ensure their safety. AIM: To compared the effectiveness and safety of remimazolam besylate versus dexmedetomidine (DEX) in gastrointestinal surgery in obese patients. METHODS: The study cohort included 60 obese patients undergoing gastrointestinal surgery between July 2021 and April 2023, comprising 30 patients who received DEX intervention (control group) and 30 patients who received remimazolam besylate intervention (research group). Heart rate (HR), respiratory rate (RR), mean arterial pressure (MAP), blood oxygen saturation (SpO2), safety (nausea and vomiting, bradycardia, hypotension, and apnea), anesthesia and examination indices [induction time, anesthesia recovery time, and postanesthesia care unit (PACU) discharge time], sedation effect (Ramsay Sedation Scale), and postoperative pain visual analog scale were comparatively analyzed before anesthesia (T0), during anesthesia (T1), and after anesthesia (T2). RESULTS: At T1, the research group showed significantly smaller changes in HR, RR, MAP, and SpO2 than the control group, with a significantly lower adverse reaction rate and shorter induction, anesthesia recovery, and PACU discharge times. Additionally, the intra- and postoperative Ramsay Sedation Scale scores were statistically higher in the research group than in the control group. CONCLUSION: Remimazolam besylate was significantly more effective than DEX in gastrointestinal surgery in obese patients and had a higher safety profile and value in clinical promotion.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39074026

RESUMO

Improving tactile sensation by vibrating insoles was recommended to prevent foot ulcers in diabetic peripheral neuropathy (DPN). Lack of an insole design for diabetics was a challenge. Clinical trials on applying vibrating insoles with noise and stochastic resonance (SR) stimulating tactile were also required. In this study, vibrating foot orthoses (VFO) with a total contact design based on orthotics were proposed to provide proper insoles for diabetes. This study aimed to determine if VFO were beneficial at enhancing tactile in DPN. VFO were developed in combination with individual's custom-made foot orthoses and stimulation signals-integrating random 0-100 Hz square wave pulse signals with pseudorandom white noise by a SR approach. Sixty patients with mild-to-severe DPN were randomized to conduct crossover experiments: using and without VFO for 60 minutes stimulation at 90% of individuals' vibration perception threshold (VPT) level. VPT values when using VFO at the 1st and 5th metatarsophalangeal joints of the left foot decreased by 9.35% ( [Formula: see text].001); 9.04% ( [Formula: see text].001), and of the right foot decreased by 7.63% ( [Formula: see text].001); 7.24% ( [Formula: see text].001), respectively. Without VFO, there was no significant difference. Subgroups of mild and moderate DPN tended to benefit greatly from utilizing VFO. VFO can improve tactile in DPN. VFO may contribute to restoring/prolonging tactile and protective sensations, also decreasing peripheral nervous system deterioration. VFO might be useful for neurorehabilitation, and help prevent foot ulcers and disabilities.


Assuntos
Estudos Cross-Over , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Órtoses do Pé , Tato , Vibração , Humanos , Vibração/uso terapêutico , Masculino , Feminino , Neuropatias Diabéticas/reabilitação , Pessoa de Meia-Idade , Idoso , Diabetes Mellitus Tipo 2/complicações , Desenho de Equipamento , Pé Diabético/reabilitação , Percepção do Tato/fisiologia , Adulto , , Processos Estocásticos , Limiar Sensorial
14.
J Neural Eng ; 21(4)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39074506

RESUMO

Objective.In recent years, the robot assisted (RA) rehabilitation training has been widely used to counteract defects of the manual one provided by physiotherapists. However, since the proprioception feedback provided by the robotic assistance or the manual methods is relatively weak for the paralyzed patients, their rehabilitation efficiency is still limited. In this study, a dynamic electrical stimulation (DES) based proprioception enhancement and the associated quantitative analysis methods have been proposed to overcome the limitation mentioned above.Approach.Firstly, the DES based proprioception enhancement method was proposed for the RA neural rehabilitation. In the method, the relationship between the surface electromyogram (sEMG) envelope of the specified muscle and the associated joint angles was constructed, and the electrical stimulation (ES) pulses for the certain joint angles were designed by consideration of the corresponding sEMG envelope, based on which the ES can be dynamically regulated during the rehabilitation training. Secondly, power spectral density, source estimation, and event-related desynchronization of electroencephalogram, were combinedly used to quantitatively analyze the proprioception from multiple perspectives, based on which more comprehensive and reliable analysis results can be obtained. Thirdly, four modes of rehabilitation training tasks, namely active, RA, DES-RA, and ES-only training, were designed for the comparison experiment and validation of the proposed DES based proprioception enhancement method.Main results.The results indicated that the activation of the sensorimotor cortex was significantly enhanced when the DES was added, and the cortex activation for the DES-RA training was similar to that for the active training. Meanwhile, relatively consistent results from the multiple perspectives were obtained, which validates the effectiveness and robustness of the proposed proprioception analysis method.Significance.The proposed methods have the potential to be applied in the practical rehabilitation training to improve the rehabilitation efficiency.


Assuntos
Eletroencefalografia , Reabilitação Neurológica , Propriocepção , Robótica , Humanos , Propriocepção/fisiologia , Robótica/métodos , Eletroencefalografia/métodos , Masculino , Reabilitação Neurológica/métodos , Reabilitação Neurológica/instrumentação , Adulto , Feminino , Estimulação Elétrica/métodos , Eletromiografia/métodos , Adulto Jovem
15.
Diabetes Metab Syndr Obes ; 17: 997-1011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435631

RESUMO

Background: The pathological damage mechanism of type 2 diabetes (T2D) and macroangiopathy is extremely complex, and T2D and arteriosclerosis obliterans have different biological behaviors and clinical features. To explore the mechanism of lower extremity arteriosclerosis occlusion (LEAOD) in T2D patients, we utilized RNA-seq to identify unique gene expression signatures of T2D and LEAOD through transcriptomic analysis. Methods: We obtained blood samples and performed RNA sequencing from four patients with T2D, five of whom had LEAOD. Another six age- and gender-matched blood samples from healthy volunteers were used for control. By exploring the general and specific differential expression analysis after transcriptome sequencing, specific gene expression patterns of T2D and LEAOD were verified. Results: Transcriptome analysis found differentially expressed genes in T2D, and T2D + LEAOD (vs normal) separately, of which 35/486 (T2D/T2D + LEAOD) were up-regulated and 1290/2970 (T2D/T2D + LEAOD) were down-regulated. A strong overlap of 571 genes across T2D, LEAOD, and coexisting conditions was mainly involved in extracellular exosomes and the transcription process. By exploring the sex difference gene expression features between T2D, T2D + LEAOD, and healthy controls, we noticed that sex chromosome-associated genes do not participate in the sexual dimorphism gene expression profiles of T2D and LEAOD. Protein-Protein Interaction Network analysis and drug target prediction provided the drug candidates to treat T2D and LEAOD. Conclusion: This study provides some evidence at the transcript level to uncover the association of T2D with LEAOD. The screened hub genes and predicted target drugs may be therapeutic targets.

16.
Front Med (Lausanne) ; 11: 1401439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873204

RESUMO

Objective: To analyze the clinical characteristics and prognostic impacts of SARS-CoV-2 Omicron infection among cancer inpatients during the December 2022 - February 2023 surge, in order to provide scientific evidence for clinical treatment and prevention and control measures. Methods: A retrospective analysis was conducted on the clinical features, prognosis, and vaccination status of cancer in-patients infected with the Omicron variant during the COVID-19 pandemic of December 2022 - February 2023. Results: A total of 137 cancer inpatients were included in the study, with a median age of 61 years, and 75 patients (54.74%) were male. The main symptoms were cough (69 cases, 50.36%), expectoration (60 cases, 43.80%), and fever (53 cases, 39.69%). Chest CT examination revealed bilateral pneumonia in 47 cases (34.31%, 47/137) and pleural effusion in 24 cases (17.52%, 24/137). Among the cancer patients, 116 cases (84.67%, 116/137) had solid tumors, and 21 cases (15.33%, 21/137) had hematologic malignancies, with the main types being breast cancer (25 cases, 18.25%) and lung cancer (24 cases, 17.52%). Among the cancer patients, 46 cases (33.58%) were asymptomatic, 81 cases (59.12%) had mild disease, 10 cases (7.30%) had severe infection, and 8 cases (5.84%) died. A total of 91 patients (66.42%) had been vaccinated, with 58 patients (42.34%) receiving three doses. Multivariate analysis showed that cerebral infarction and hypoproteinemia were risk factors for death from COVID-19 infection. Conclusion: Cancer patients infected with SARS-CoV-2 Omicron typically exhibit mild disease manifestations, but some cancer patients infected with the Omicron variant might progress to severe illness, and even death, necessitating close monitoring and attention during the early stages of infection. Additionally, the presence of cerebral infarction and hypoproteinemia significantly increases the risk of death.

17.
Curr Probl Cardiol ; 49(1 Pt C): 102116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802168

RESUMO

Mpox, a novel epidemic disease, has broken out the period of coronavirus disease 2019 since May 2022, which was caused by the mpox virus. Up to 12 September 2023, there are more than 90,439 confirmed mpox cases in over 115 countries all over the world. Moreover, the outbreak of mpox in 2022 was verified to be Clade II rather than Clade I. Highlighting the significance of this finding, a growing body of literature suggests that mpox may lead to a series of cardiovascular complications, including myocarditis and pericarditis. It is indeed crucial to acquire more knowledge about mpox from a perspective from the clinical cardiologist. In this review, we would discuss the epidemiological characteristics and primary treatments of mpox to attempt to provide a framework for cardiovascular physicians.


Assuntos
COVID-19 , Doenças Cardiovasculares , Mpox , Miocardite , Pericardite , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , COVID-19/epidemiologia , Pericardite/epidemiologia , Pericardite/etiologia , Pericardite/terapia
18.
Int J Biol Macromol ; 258(Pt 2): 129068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158069

RESUMO

Conductive hydrogel which belongs to a type of soft materials has recently become promising candidate for flexible electronics application. However, it remains difficult for conductive hydrogel-based strain sensors to achieve the organic unity of large stretchability, high conductivity, self-healing, anti-freezing, anti-drying and transparency. Herein, a multifunctional conductive organohydrogel with all of the above superiorities is prepared by crosslinking polyacrylamide (PAM) with dialdehyde starch (DAS) in glycerol-water binary solvent. Attributing to the synergy of abundant hydrogen bonding and Schiff base interactions caused by introducing glycerol and dialdehyde starch, respectively, the organohydrogel achieved balanced mechanical and electrical properties. Besides, the addition of glycerol promoted the water-locking effects, making the organohydrogel retain the superior mechanical properties and conductivity even at extreme conditions. The resultant organohydrogel strain sensor exhibits desirable sensing performance with high sensitivity (GF = 6.07) over a wide strain range (0-697 %), enabling the accurate monitoring of subtle body motions even at -30 °C. On the basis, a hand gesture monitor system based on the organohydrogel sensors arrays is constructed using machine learning method, achieving a considerable sign language recognition rate of 100 %, and thus providing convenience for communications between the hearing or speaking-impaired and general person.


Assuntos
Glicerol , Língua de Sinais , Amido/análogos & derivados , Humanos , Condutividade Elétrica , Hidrogéis , Água
19.
Curr Probl Cardiol ; 49(1 Pt B): 102096, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37741601

RESUMO

Nuclear factor interleukin-3 (NFIL3), a proline- and acidic-residue-rich (PAR) bZIP transcription factor, is called the E4 binding protein 4 (E4BP4) as well, which is relevant to regulate the circadian rhythms and the viability of cells. More and more evidence has shown that NFIL3 is associated with different cardiovascular diseases. In recent years, it has been found that NFIL3 has significant functions in the progression of atherosclerosis (AS) via the regulation of inflammatory response, macrophage polarization, some immune cells and lipid metabolism. In this overview, we sum up the function of NFIL3 during the development of AS and offer meaningful views how to treat cardiovascular disease related to AS.


Assuntos
Aterosclerose , Interleucina-3 , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
20.
Adv Mater ; 36(27): e2402350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554138

RESUMO

High-boiling-point nonhalogenated solvents are superior solvents to produce large-area organic solar cells (OSCs) in industry because of their wide processing window and low toxicity; while, these solvents with slow evaporation kinetics will lead excessive aggregation of state-of-the-art small molecule acceptors (e.g. L8-BO), delivering serious efficiency losses. Here, a heterogeneous nucleating agent strategy is developed by grafting oligo (ethylene glycol) side-chains on L8-BO (BTO-BO). The formation energy of the obtained BTO-BO; while, changing from liquid in a solvent to a crystalline phase, is lower than that of L8-BO irrespective of the solvent type. When BTO-BO is added as the third component into the active layer (e.g. PM6:L8-BO), it easily assembles to form numerous seed crystals, which serve as nucleation sites to trigger heterogeneous nucleation and increase nucleation density of L8-BO through strong hydrogen bonding interactions even in high-boiling-point nonhalogenated solvents. Therefore, it can effectively suppress excessive aggregation during growth, achieving ideal phase-separation active layer with small domain sizes and high crystallinity. The resultant toluene-processed OSCs exhibit a record power conversion efficiency (PCE) of 19.42% (certificated 19.12%) with excellent operational stability. The strategy also has superior advantages in large-scale devices, showing a 15.03-cm2 module with a record PCE of 16.35% (certificated 15.97%).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa