Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083432

RESUMO

We elucidate the role of subsurface oxygen on the production of C2 products from CO2 reduction over Cu electrocatalysts using the newly developed grand canonical potential kinetics density functional theory method, which predicts that the rate of C2 production on pure Cu with no O is ∼500 times slower than H2 evolution. In contrast, starting with Cu2O, the rate of C2 production is >5,000 times faster than pure Cu(111) and comparable to H2 production. To validate these predictions experimentally, we combined time-dependent product detection with multiple characterization techniques to show that ethylene production decreases substantially with time and that a sufficiently prolonged reaction time (up to 20 h) leads only to H2 evolution with ethylene production ∼1,000 times slower, in agreement with theory. This result shows that maintaining substantial subsurface oxygen is essential for long-term C2 production with Cu catalysts.

2.
Small ; 19(14): e2205720, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634983

RESUMO

Nanoporous single-crystal silicon carbide (SiC) is widely used in various applications such as protein dialysis, as a catalyst support, and in photoanodes for photoelectrochemical water splitting. However, the fabrication of nano-structured SiC is challenging owing to its extreme chemical and mechanical stability. This study demonstrates a highly-efficient, open-circuit electrolytic plasma-assisted chemical etching (EPACE) method without aggressive fluorine-containing reactants. The EPACE method enables the nano-structuring of SiC via a plasma-enveloped microtool traversing over the target material in an electrolyte bath. Through process design, EPACE readily produces a uniform nanoporous layer on a 4H-SiC wafer in KOH aqueous solution, with adjustable pore diameters in the range 40-130 nm. Plasma diagnosis by optical emission spectrometry (OES) and surface microanalysis reveal that EPACE realizes a nanoporous structure by electrolytic plasma-assisted oxidation and subsequent thermochemical reduction of an oxide. An increase in voltage or a decrease in etch gap intensifies the plasma and improves the etching efficiency. The maximum etch rate and depth reach 540 nm min-1 and 10 µm, respectively, demonstrating the significant potential of the approach as a time-saving and sustainable nanofabrication method for industrial applications. Further, the effectiveness of the fabricated SiC nanoporous structure for application in photoelectrochemical water splitting is demonstrated.

3.
Nat Mater ; 20(8): 1130-1135, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33820963

RESUMO

Development of an efficient yet durable photoelectrode is of paramount importance for deployment of solar-fuel production. Here, we report the photoelectrochemically self-improving behaviour of a silicon/gallium nitride photocathode active for hydrogen production with a Faradaic efficiency approaching ~100%. By using a correlative approach based on different spectroscopic and microscopic techniques, as well as density functional theory calculations, we provide a mechanistic understanding of the chemical transformation that is the origin of the self-improving behaviour. A thin layer of gallium oxynitride forms on the side walls of the gallium nitride grains, via a partial oxygen substitution at nitrogen sites, and displays a higher density of catalytic sites for the hydrogen-evolving reaction. This work demonstrates that the chemical transformation of gallium nitride into gallium oxynitride leads to sustained operation and enhanced catalytic activity, thus showing promise for oxynitride layers as protective catalytic coatings for hydrogen evolution.

4.
Angew Chem Int Ed Engl ; 60(47): 24838-24843, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543499

RESUMO

Catalysts based on Cu nanocrystals (NCs) for electrochemical CO2 -to-C2+ conversion with high activity have been a subject of considerable interest, but poor stability and low selectivity for a single C2+ product remain obstacles for realizing sustainable carbon-neutral cycles. Here, we used the facet-selective atomic layer deposition (FS-ALD) technique to selectively cover the (111) surface of Cu NCs with ultrathin Al2 O3 to increase the exposed facet ratio of (100)/(111), resulting in a faradaic efficiency ratio of C2 H4 /CH4 for overcoated Cu NCs 22 times higher than that for pure Cu NCs. Peak performance of the overcoated catalyst (Cu NCs/Al2 O3 -10C) reaches a C2 H4 faradaic efficiency of 60.4 % at a current density of 300 mA cm-2 in 5 M KOH electrolyte, when using a gas diffusion electrode flow cell. Moreover, the Al2 O3 overcoating effectively suppresses the dynamic mobility and the aggregation of Cu NCs, which explains the negligible activity loss and selectivity degradations of Cu NCs/Al2 O3 -10C shown in stability tests.

5.
Nat Commun ; 14(1): 2047, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041153

RESUMO

Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.

6.
J Phys Chem Lett ; 12(49): 11951-11959, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34881908

RESUMO

A prerequisite for advancing hybrid solar light harvesting systems is a comprehensive understanding of the spatiotemporal dynamics of photoinduced interfacial charge separation. Here, we demonstrate access to this transient charge redistribution for a model hybrid system of nanoporous zinc oxide (ZnO) and ruthenium bipyridyl chromophores. The site-selective probing of the molecular electron donor and semiconductor acceptor by time-resolved X-ray photoemission provides direct insight into the depth distribution of the photoinjected electrons and their interaction with the local band structure on a nanometer length scale. Our results show that these electrons remain localized within less than 6 nm from the interface, due to enhanced downward band bending by the photoinjected charge carriers. This spatial confinement suggests that light-induced charge generation and transport in nanoscale ZnO photocatalytic devices proceeds predominantly within the defect-rich surface region, which may lead to enhanced surface recombination and explain their lower performance compared to titanium dioxide (TiO2)-based systems.

7.
ACS Appl Mater Interfaces ; 12(5): 5251-5258, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31971360

RESUMO

Conversion of CO2 to reduced products is a promising route to alleviate irreversible climate change. Here we report the synthesis of a Co-based phthalocyanine with pyridine moieties (CoPc-Pyr), which is supported on a carbon electrode and shows Faradaic efficiency ∼90% for CO at 490 mV of overpotential (-0.6 V vs reversible hydrogen electrode (RHE)). In addition, its catalytic activity at -0.7 V versus RHE surpasses other Co-based molecular and metal-organic framework catalysts for CO2 reduction at this bias. Density functional theory calculations show that pyridine moieties enhance CO2 adsorption and electron affinity of the Co center by an inductive effect, thus lowering the overpotential necessary for CO2 conversion. Our study shows that CoPc-Pyr reduces CO2 at lower overpotential and with higher activity than noble metal electrodes, such as silver.

8.
Sci Rep ; 8(1): 2580, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396471

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

9.
ACS Appl Mater Interfaces ; 10(34): 29048-29057, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29954172

RESUMO

We show that sliding on the surface of GaN can permanently change the surface band structure, resulting in an increased degree of band bending by more than 0.5 eV. We hypothesize that shear and contact stresses introduce vacancies that cause a spatially variant band bending. Band bending is observed by shifts and broadening of core-level binding energies toward lower values in X-ray photoelectron spectroscopy. The extent of band bending is controlled by humidity, number of sliding cycles and applied load, presenting opportunities for scalable tuning of the degree of band bending on a GaN surface. Scanning transmission electron microscopy revealed that the epitaxy of GaN was preserved up to the surface with regions of defects near the surface. The hypothesized mechanism of band bending is shear-induced defect generation, which has been shown to affect the surface states. The ability to introduce band bending at the GaN surface is promising for applications in photovoltaics, photocatalysis, gas sensing, and photoelectrochemical processes.

10.
Sci Rep ; 7(1): 14126, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074963

RESUMO

We explore how crystallographic order and orientation affect the tribological (friction and wear) performance of gallium nitride (GaN), through experiments and theory. Friction and wear were measured in every direction on the c-plane of GaN through rotary wear experiment. This revealed a strong crystallographic orientation dependence of the sliding properties of GaN; a 60° periodicity of wear rate and friction coefficient was observed. The origin of this periodicity is rooted in the symmetry presented in wurtzite hexagonal lattice structure of III-nitrides. The lowest wear rate was found as 0.6 × 10-7 mm3/Nm with <1[Formula: see text]00>, while the wear rate associated with <1[Formula: see text]10> had the highest wear rate of 1.4 × 10-7 mm3/Nm. On the contrary, higher friction coefficient can be observed along <1[Formula: see text]00> while lower friction coefficient always appeared along <1[Formula: see text]10>. We developed a simple molecular statics approach to understand energy barriers associated with sliding and material removal; this calculated change of free energy associated with sliding revealed that there were smaller energy barriers sliding along <1[Formula: see text]10> as compared to the <1[Formula: see text]00> direction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa