Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Genomics ; 112(1): 736-748, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095997

RESUMO

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified. Genes (LuxS, pfs, LuxR and qseC) that related to the specific QS system were also identified. Complete genome sequence of S. baltica 128 provide insights into the QS-related spoilage potential, which might provide novel information for the development of new approaches for spoilage detection and prevention based on QS target.


Assuntos
Adaptação Fisiológica/genética , Genes Bacterianos , Loci Gênicos , Percepção de Quorum/genética , Alimentos Marinhos/microbiologia , Shewanella , Microbiologia de Alimentos , Shewanella/genética , Shewanella/isolamento & purificação , Shewanella/metabolismo
2.
J Food Sci Technol ; 57(7): 2452-2460, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32549595

RESUMO

This study was designed to investigate the changes of physicochemical, microbiological and sensory properties of oyster tissues during chilled storage at 4 °C, including digestive gland (DG), the gonad and surrounding mantle area (GM), adductor muscle (AM). Sensory evaluation showed that the decrease of sensory scores of the three oyster tissues was more rapid than the whole oyster (WO). The drip loss of DG was more than other tissues and the WO. Moreover, the GM showed higher extent of lipid oxidation than other tissues and WO, while the AM showed higher TVB-N value and microbial counts than other tissues and WO. It is concluded that the spoilage of oyster during chilled storage greatly depended on the composition of oyster tissues. Overall, the findings may provide new insights to control the spoilage of oyster based on the changes of oyster tissues during storage.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31017521

RESUMO

Gold nanoparticles (AuNPs) have been previously shown to induce gut dysbiosis during colitis in mice, but the underlying mechanism is not clear yet. Here, we evaluated the effects of AuNPs (5 nm diameter, coated with tannic acid, polyvinylpyrrolidone or citrate) on H2O2 accumulation and pathogen antagonization by an intestinal strain of Lactobacillus gasseri under aerobic cultural conditions. AuNPs (0.65 µg/mL) reduced over 50% of H2O2 accumulation by L. gasseri, and significantly inhibited the antagonistic action of L. gasseri on growth of four foodborne enteric pathogens, i.e. Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus in associative cultures.


Assuntos
Biomimética , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Ouro/toxicidade , Lactobacillus gasseri/fisiologia , Nanopartículas Metálicas/toxicidade , Animais , Catalase , Listeria monocytogenes , Camundongos , Salmonella typhimurium
4.
Mar Drugs ; 17(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888208

RESUMO

Siderophores are iron chelators with low molecular weight secreted by microorganisms. Siderophores have the potential to become natural iron fortifiers. To explore the feasibility of the application of Synechococcus sp. PCC7002-derived siderophores as iron fortifiers, Synechococcus sp. PCC7002, as a carrier, was fermented to produce siderophores. The absorption mechanism and anemia intervention effect of siderophores-chelated iron (SCI) were studied through the polarized Caco-2 Cell monolayers and the rat model of iron-deficiency anemia, respectively. The results indicated that siderophores (from Synechococcus sp. PCC7002) had an enhancing effect on iron absorption in polarized Caco-2 cell monolayers. The main absorption site of SCI was duodenum with pH 5.5, and the absorption methods included endocytosis and DMT1, with endocytosis being dominant. The effect of sodium phytate on SCI was less than that of ferrous sulfate. Therefore, SCI could resist inhibitory iron absorption factors in polarized Caco-2 cell monolayers. SCI showed significantly higher relative bioavailability (133.58 ± 15.42%) than ferrous sulfate (100 ± 14.84%) and ferric citrate (66.34 ± 8.715%) in the rat model. Food intake, hemoglobin concentration, and hematocrit and serum iron concentration of rats improved significantly after Fe-repletion. Overall, this study indicated that siderophores derived from Synechococcus sp. PCC7002 could be an effective and feasible iron nutritive fortifier.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Ferro/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Synechococcus/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Humanos , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Ratos
5.
Molecules ; 24(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505731

RESUMO

To expand the utilization of oyster protein (OP), the effects of high pressure (100 to 500 MPa) on chemical forces, structure, microstructure, and digestibility properties were investigated. High pressure (HP) treatment enhanced the electrostatic repulsion (from -13.3Control to -27.8HP200 mV) between protein molecules and avoided or retarded the formation of protein aggregates. In addition, the HP treated samples showed uniform distribution and small particle size. The changes in electrostatic interaction and particle size contributed to the improvement of solubility (from 10.53%Control to 19.92%HP500 at pH 7). The stretching and unfolding of protein were modified by HP treatment, and some internal hydrophobic groups and -SH groups were exposed. HP treatment modified the secondary structure of OP. The treated samples contained less α-helix and ß-sheet structures, whereas the proportions of ß-sheet and random coil structures were increased. The treated samples have high digestibility in the stomach (from 26.3%Control to 39.5%HP500) and in the total digestive process (from 62.1%Control to 83.7%HP500). In addition, the total digestive production showed higher percentages of small peptides (<1 kDa) after HP treatment. The protein solubility and digestibility were increased after HP treatment, and high solubility and high digestibility might increase the chance that OP become a kind of protein supplement.


Assuntos
Ostreidae/química , Pressão/efeitos adversos , Agregados Proteicos , Proteínas/química , Animais , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Proteínas/metabolismo , Solubilidade , Estômago/química
6.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781435

RESUMO

This study investigated the effects of α-tocopherol (α-TOH) on the physicochemical properties of sturgeon surimi during 16-week storage at -18 °C. An aliquot of 0.1% (w/w) of α-TOH was added into the surimi and subjected to frozen storage, and 8% of a conventional cryoprotectant (4% sorbitol and 4% sucrose, w/w) was used as a positive control. Based on total viable count, pH and whiteness, α-TOH exhibited a better protection for frozen sturgeon surimi than cryoprotectant during frozen storage. According to soluble protein content, carbonyl content, total sulfhydryl content, and surface hydrophobicity, α-TOH and cryoprotectant showed the same effects on retarding changes of proteins. The results of breaking force, deformation, gel strength, water-holding capacity and microstructure of sturgeon surimi indicated that the gel properties of frozen sturgeon surimi were retained by α-TOH. Our results suggest that α-TOH is an attractive candidate to maintain the quality of sturgeon surimi during frozen storage.


Assuntos
Crioprotetores/farmacologia , Peixes/metabolismo , Congelamento , alfa-Tocoferol/farmacologia , Animais , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Compostos de Sulfidrila/metabolismo
7.
J Food Sci Technol ; 56(5): 2605-2610, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168142

RESUMO

3-Phenyllactic acid (PLA) is a novel and natural antimicrobial compound. However, the concentration of PLA produced by native microbes was rather low. To enhance the production of PLA of Lactobacillus plantarum AB-1, the microcapsules of L. plantarum AB-1 cells with a high quorum-sensing capacity was established and investigated. In addition, the relation between PLA production and quorum sensing was further investigated and confirmed by adding the exogenous 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor). The results indicated that the PLA production of L. plantarum AB-1 in microencapsulated cells (MC cells) was higher than that of the free cells, and the lactate dehydrogenase activity, autoinducer-2 (AI-2) levels and the relative expression of the luxS gene were also significantly increased in MC cells (P < 0.05). In addition, the cell growth, AI-2 levels and PLA production of L. plantarum AB-1 were also significantly promoted after adding 24 µM exogenous DPD. The results suggest that the PLA production of L. plantarum was partly regulated by the AI-2/LuxS system, and microencapsulation can increase the local AI-2 level and enhance QS capacity, which are beneficial to PLA production. The results may provide a new insight and experimental basis for the industrial production of PLA.

8.
J Food Sci Technol ; 56(1): 114-121, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30728552

RESUMO

Shewanella baltica is the predominant bacteria in spoiled shrimp (Litopenaeus vannamei), however, the spoilage ability and the mechanism of S. baltica is still unknown. S. baltica can't produce the signal molecule of acyl-homoserine-lactones (AHLs), so the aim of this study was to investigate how wild type S. baltica SA03 (WT SA03) eavesdrop exogenous AHLs to enhance its spoilage ability through LuxR receptor. The results indicated that Aeromonas spp. (Aer), Acinetobacter spp. (Aci) and Serratia spp. (Ser) isolated from refrigerated shrimp can produce different AHLs. WT SA03 can eavesdrop the AHLs of Aer (C4-HSL), Aci (O-C6-HSL) and Ser (C6-HSL, O-C6-HSL) to enhance its growth, especially Ser. Exogenous C4-HSL and C6-HSL enhanced biofilm formation of WT SA03, and C6-HSL and O-C6-HSL enhanced thioredoxin reductase trxB mRNA expression. However, the luxR mutant of WT SA03 (ΔluxR SA03) lost or weakened the role of using environmental AHLs. In vivo experiments, the lag time of WT SA03 was shortened by 6.4 h, 6.2 h and 14.4 h by co-inoculated with Aer, Aci and Ser, respectively. The total volatile basic nitrogen (TVB-N) were significantly enhanced in the samples co-inoculated with WT SA03 and Aer (or Aci, Ser) than those of ΔluxR SA03 and Aer (or Aci, Ser) (p < 0.05). The results showed that S. baltica SA03 can utilize AHLs produced by other bacteria to enhance its growth and spoilage ability through LuxR receptor system. Quorum sensing based on AHLs of bacteria might as the potential targets for food spoilage control.

9.
Microb Cell Fact ; 17(1): 27, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463242

RESUMO

BACKGROUND: Inorganic polyphosphate bodies (PPB) have recently been linked to a variety of functions in mammalian cells. To improve the yield of PPB from Synechococcus sp. PCC 7002 and characterize its form, in this study, a recombinant plasmid containing a polyphosphate kinase (ppk) gene was generated and transformed into Synechococcus sp. PCC 7002. RESULTS: PPB separated by Sephadex G-100 was characterized and added to polarized human intestinal epithelial (Caco-2) cells, and the absorption effect was assessed. The ppk gene was stably expressed by induction with 1 µM nickel, and the resulting PPB yield from Synechococcus sp. PCC 7002 cells increased by 89.66%. Transmission electron microscopy and dynamic light scattering analyses showed that PPB from these cells were nanosized, ranging from a few to approximately 100 nanometres in diameter. PPB can be taken up by Caco-2 cells and are mainly distributed around lipid droplets. CONCLUSIONS: We determined that PPB can be overproduced in Synechococcus sp. PCC 7002 and that the resulting PPB were well absorbed by Caco-2 cells. Microalgae provide a promising "cell factory" for PPB production.


Assuntos
Polifosfatos/metabolismo , Synechococcus/genética , Humanos
10.
J Nanobiotechnology ; 16(1): 86, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384844

RESUMO

BACKGROUND: Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.7 macrophages. RESULTS: Citrate- and polyvinylpyrrolidone (PVP)-stabilized 5-nm AuNPs (Au-5 nm/Citrate and Au-5 nm/PVP) and tannic acid (TA)-stabilized 5-, 10-, 15-, 30- and 60-nm AuNPs were intragastrically administered to C57BL/6 mice daily for 8 days during and after 5-day dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed more marked anti-colitis effects by oral administration of Au-5 nm/Citrate and Au-5 nm/PVP, when compared to TA-stabilized AuNPs. Based on colonic myeloperoxidase activity, colonic and peripheral levels of interleukin-6 and tumor necrosis factor-α, and peripheral counts of leukocyte and lymphocyte, Au-5 nm/Citrate and Au-5 nm/PVP attenuated colonic and systemic inflammation more effectively than TA-stabilized AuNPs. High-throughput sequencing of fecal 16S rRNA indicated that AuNPs could induce gut dysbiosis in mice by decreasing the α-diversity, the Firmicutes/Bacteroidetes ratio, certain short-chain fatty acid-producing bacteria and Lactobacillus. Based on in vitro studies using RAW264.7 cells and electron spin resonance oximetry, AuNPs inhibited lipopolysaccharide (LPS)-triggered inducible nitric oxide (NO) synthase expression and NO production via reduction of Toll-like receptor 4 (TLR4), and attenuated LPS-induced nuclear factor kappa beta activation and proinflammatory cytokine production via both TLR4 reduction and catalytic detoxification of peroxynitrite and hydrogen peroxide. CONCLUSIONS: AuNPs have promising potential as anti-inflammatory agents; however, their therapeutic applications via the oral route may have a negative impact on the gut microbiota.


Assuntos
Colite/prevenção & controle , Disbiose/etiologia , Trato Gastrointestinal/patologia , Ouro/administração & dosagem , Inflamação/patologia , Nanopartículas Metálicas/administração & dosagem , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Filogenia , Células RAW 264.7 , Eletricidade Estática
11.
Mar Drugs ; 16(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201855

RESUMO

Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH2PO4, 11.76 mM of NaNO3, and 30.42 mM of Na2SO4. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30⁻70 nm and 10⁻30 nm, respectively. 4',6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14⁻18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1ß through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Nanopartículas , Polifosfatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Synechococcus/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Polifosfatos/isolamento & purificação , Polifosfatos/metabolismo , Células RAW 264.7 , Transdução de Sinais/imunologia
12.
Mar Drugs ; 16(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308963

RESUMO

In this paper, a novel natural influenza A H1N1 virus neuraminidase (NA) inhibitory peptide derived from cod skin hydrolysates was purified and its antiviral mechanism was explored. From the hydrolysates, novel efficient NA-inhibitory peptides were purified by a sequential approach utilizing an ultrafiltration membrane (5000 Da), sephadex G-15 gel column and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequence of the pure peptide was determined by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was PGEKGPSGEAGTAGPPGTPGPQGL, with a molecular weight of 2163 Da. The analysis of the Lineweacer⁻Burk model indicated that the peptide was a competitive NA inhibitor with Ki of 0.29 mM and could directly bind free enzymes. In addition, docking studies suggested that hydrogen binding might be the driving force for the binding affinity of PGEKGPSGEAGTAGPPGTPGPQGL to NA. The cytopathic effect reduction assay showed that the peptide PGEKGPSGEAGTAGPPGTPGPQGL protected Madin⁻Darby canine kidney (MDCK) cells from viral infection and reduced the viral production in a dose-dependent manner. The EC50 value was 471 ± 12 µg/mL against H1N1. Time-course analysis showed that PGEKGPSGEAGTAGPPGTPGPQGL inhibited influenza virus in the early stage of the infectious cycle. The virus titers assay indicated that the NA-inhibitory peptide PGEKGPSGEAGTAGPPGTPGPQGL could directly affect the virus toxicity and adsorption by host cells, further proving that the peptide had an anti-viral effect with multiple target sites. The activity of NA-inhibitory peptide was almost inactivated during the simulated in vitro gastrointestinal digestion, suggesting that oral administration is not recommended. The peptide PGEKGPSGEAGTAGPPGTPGPQGL acts as a neuraminidase blocker to inhibit influenza A virus in MDCK cells. Thus, the peptide PGEKGPSGEAGTAGPPGTPGPQGL has potential utility in the treatment of the influenza virus infection.


Assuntos
Antivirais/farmacologia , Gadus morhua/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Peptídeos/farmacologia , Pele/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Peso Molecular , Infecções por Orthomyxoviridae/tratamento farmacológico , Carga Viral/métodos
13.
J Food Sci Technol ; 55(7): 2795-2800, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042596

RESUMO

Numerous bacterial species utilize quorum sensing molecules acyl-homoserine-lactones (AHLs) to communicate, however, crosstalk often complicates the dynamics and behaviors of mixed populations. In this study, we developed a luxR mutant of wild type Shewanella baltica SA03 (WT SA03), and aimed to investigate the role of S. baltica LuxR (AHLs receptor) involved in the spoilage of refrigerated shrimp (Litopenaeus vannamei) by inoculating WT SA03 and luxR mutant of S. baltica SA03 (ΔluxR SA03), respectively. The results indicated the maximum growth rate of total viable bacteria in shrimp inoculated with ΔluxR SA03 was 73.34% lower than that of WT SA03. The lag time of total bacteria in shrimp treated with ΔluxR SA03 were 87.6 h, significantly longer than that of WT SA03. Meanwhile, the total volatile basic nitrogen concentrations of shrimp treated with WT SA03 were significantly higher than that of ΔluxR SA03 after 2 days of storage, which were in agreement with the decrease of the content of AHLs of the shrimp. The results indicated S. baltica might utilize AHLs produced by other bacteria and accelerate the shrimp spoilage process through LuxR receptor system.

14.
J Food Sci Technol ; 55(5): 1903-1912, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29666543

RESUMO

Shewanella baltica and Acinetobacter are among the predominant spoilage bacteria in refrigerated shrimp (Litopenaeus vannamei). S. baltica are incapable of producing acyl-homoserine lactone (AHL) quorum sensing signals, but can respond to environmental AHLs. In this paper, Acinetobacter was found to produce three AHLs, i.e. N-butanoyl-l-homoserine lactone (C4-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (O-C6-HSL) and N-(3-oxooctanoyl)-l-homoserine lactone (O-C8-HSL), according to thin-layer chromatography using the bioreporter Agrobacterium tumefaciens A136. The agar diffusion and ß-galactosidase assays revealed that S. baltica could eavesdrop on these three AHLs from Acinetobacter. Eavesdropping on Acinetobacter AHLs especially C4-HSL was found to boost the growth of S. baltica particularly under nutrient limiting conditions (up to 40-fold increase) in the co-culture experiments. The azocasein assay revealed that S. baltica produced fourfold more extracellular proteases in response to Acinetobacter AHLs. As demonstrated by the biofilm crystal violet staining assay and confocal laser scanning microscopy, eavesdropping also decreased the biofilm-forming capacity of Acinetobacter. By inoculation of S. baltica and Acinetobacter onto surface-sterilized shrimp, eavesdropping was found to endow a growth advantage to S. baltica in vivo, resulting in a 0.5 day shortened shelf life of shrimp according to total volatile basic nitrogen levels and sensory analysis. Overall, the AHL-dependent eavesdropping increased the spoilage potential of S. baltica, providing a fresh perspective on the spoilage process of refrigerated L. vannamei, and this may inspire the development of novel preservation techniques in the future to further reduce post-harvest loss of shrimp.

15.
J Food Sci Technol ; 52(8): 4841-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26243904

RESUMO

Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P < 0.05). The coefficient of determination, R (2) values for initial freezing point (T i ), unfreezable water mass fraction (W u ), apparent specific heat (C app ) and Enthalpy (H) were 0.896 ~ 0.999. The combined effects of these independent variables on T i , W u , C app and H were investigated. The results indicated that T i , C app and H varied curvilinearly with increasing of glycine, sodium chloride and D-sorbitol content whereas W u increased nearly linearly. Based on response plots and desirability functions, the optimum combination of process variables for Pacific white shrimp previously treated with freezing-point regulators were 0.876 % for glycine content, 2.298 % for sodium chloride content and 0.589 % for D-sorbitol content, correspondently the optimized thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage.

16.
Food Res Int ; 178: 113914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309863

RESUMO

Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.


Assuntos
Aldeídos , Odorantes
17.
Int J Biol Macromol ; 254(Pt 1): 127811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923042

RESUMO

Microalgae polysaccharides (MAPS) have emerged as novel prebiotics, but their direct effects on intestinal epithelial barrier are largely unknown. Here, MAPS isolated from Chlorella pyrenoidosa, Spirulina platensis, and Synechococcus sp. PCC 7002 were characterized as mainly branched heteropolysaccharides, and were bioavailable to Caco-2 cells based on fluorescein isothiocyanate labeling and flow cytometry analysis. These MAPS were equally effective to scavenge hydroxyl and superoxide radicals in vitro and to attenuate the H2O2-, dextran sodium sulfate-, tumor necrosis factor α-, and interleukin 1ß-induced burst of intracellular reactive oxygen species and mitochondrial superoxide radicals, interleukin-8 production, cyclooxygenase-2 and inducible nitric oxide synthase expression, and/or tight junction disruption in polarized Caco-2 cells. MAPS and a positive drug Mesalazine were intragastrically administered to C57BL/6 mice daily for 7 d during and after 4-d dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed equivalent anti-colitis efficacies of MAPS and Mesalazine, and based on biochemical analysis of colonic tight junction proteins, goblet cells, mucin 2 and trefoil factor 3 transcription, and colonic and peripheral pro-inflammatory cytokines, MAPS alleviated dextran sodium sulfate-induced intestinal epithelial barrier dysfunction, and their activities were even superior than Mesalazine. Overall, MAPS confer direct antioxidant and anti-inflammatory protection to intestinal epithelial barrier function.


Assuntos
Chlorella , Colite , Microalgas , Humanos , Animais , Camundongos , Antioxidantes/metabolismo , Dextranos/farmacologia , Células CACO-2 , Mesalamina/farmacologia , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Células Epiteliais , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças
18.
Food Chem ; 449: 138970, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653141

RESUMO

Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.


Assuntos
Bactérias , Crassostrea , Fermentação , Aromatizantes , Paladar , Animais , Crassostrea/microbiologia , Crassostrea/metabolismo , Crassostrea/química , Aromatizantes/metabolismo , Aromatizantes/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Fungos/metabolismo , Fungos/classificação , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Frutos do Mar/análise , Frutos do Mar/microbiologia
19.
Food Funct ; 14(17): 8008-8017, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37593798

RESUMO

Synechococcus sp. PCC 7002 has the potential to be used as a new resource of food owing to its nutritional and functional benefits. However, little information has been published regarding the safety of Synechococcus sp. PCC 7002 biomass (SynB). The present study assessed genotoxicity, acute and subchronic toxicity of SynB for the first time. SynB did not show any genotoxicity based on the Ames test, mammalian erythrocyte micronucleus test, and mouse primary spermatocyte chromosome aberration test. SynB administered by gavage in mice at a dose of 10 g per kg body weight did not induce death or toxicity based on the acute toxicity study, indicating the median lethal dose value of SynB was over 10 g per kg body weight. In the 90-day subchronic toxicity study, no treatment-related mortality or clinical sign was noted with SynB at doses of 5 and 10 g per kg body weight in mice, and there was no adverse effect of SynB on food consumption, organ coefficients, blood biochemistry, urinalysis and histopathology. The Non Observed Adverse Effect Level for SynB in female and male mice was not less than 10 g per kg body weight per day based on subchronic toxicity. These results support the safe use of SynB as a new food raw material.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Synechococcus , Feminino , Masculino , Animais , Camundongos , Biomassa , Dano ao DNA , Peso Corporal , Mamíferos
20.
Food Chem ; 404(Pt A): 134595, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257269

RESUMO

To investigate the effects of high hydrostatic pressure (HHP) on the conformation and IgG binding capacity, tropomyosin (TM) from Pacific oysters was subjected to high pressures of 300, 450 or 600 MPa. The results showed that the α-helix of TM with HHP-induced was decreased, while ß-turn, ß-sheet (predominantly) and random coil were increased. The surface hydrophobicity and sulfhydryl group content of TM were increased, while the fluorescence/UV intensity were decreased after HHP treatment. Atomic force microscopy (AFM) result exhibited that the morphology of TM was changed at 600 MPa and formed fibrous structures. The IgG binding capacity of TM and digested TM was markedly reduced when the pressure was increased, especially at 600 MPa. Overall, this study indicated that HHP-induced conformational changes in TM contributed to the reduction in IgG binding capacity. These findings suggested that HHP may be a promising non-thermal technology for producing hypoallergenic oyster products.


Assuntos
Crassostrea , Tropomiosina , Animais , Pressão Hidrostática , Tropomiosina/química , Estrutura Secundária de Proteína , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa