Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): 7063-7080, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38808662

RESUMO

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Replicação do DNA , Proteínas de Ligação a DNA , Células-Tronco Neurais , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Cromatina/metabolismo , Origem de Replicação , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Genoma/genética , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Camundongos Knockout
2.
Biochem Biophys Res Commun ; 721: 150106, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795634

RESUMO

3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.


Assuntos
Camundongos Knockout , Timo , Animais , Camundongos , Timo/imunologia , Baço/imunologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Transdução de Sinais , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Interleucina-17/metabolismo , Interleucina-17/imunologia , Linfócitos T CD8-Positivos/imunologia
3.
Respir Res ; 25(1): 57, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267973

RESUMO

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease which is easily misdiagnosed. Vascular endothelial growth factor D (VEGF-D), as the most common biomarker, however, is not so perfect for the diagnosis and severity assessment of LAM. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ)-based method was used to identify a cytoskeleton protein, moesin. 84 patients with LAM, 44 patients with other cystic lung diseases (OCLDs), and 37 healthy control subjects were recruited for collecting blood samples and clinical data. The levels of moesin in serum were evaluated by ELISA. The relationships of moesin with lymphatic involvement, lung function, and treatment decision were explored in patients with LAM. RESULTS: The candidate protein moesin was identified by the proteomics-based bioinformatic analysis. The serum levels of moesin were higher in patients with LAM [219.0 (118.7-260.5) pg/mL] than in patients with OCLDs (125.8 ± 59.9 pg/mL, P < 0.0001) and healthy women [49.6 (35.5-78.9) ng/mL, P < 0.0001]. Moesin had an area under the receiver operator characteristic curve (AUC) of 0.929 for predicting LAM diagnosis compared to healthy women (sensitivity 81.0%, specificity 94.6%). The combination of moesin and VEGF-D made a better prediction in differentiating LAM from OCLDs than moesin or VEGF-D alone. Moreover, elevated levels of moesin were related to lymphatic involvement in patients with LAM. Moesin was found negatively correlated with FEV1%pred, FEV1/FVC, and DLCO%pred (P = 0.0181, r = - 0.3398; P = 0.0067, r = - 0.3863; P = 0.0010, r = - 0.4744). A composite score combining moesin and VEGF-D improved prediction for sirolimus treatment, compared with each biomarker alone. CONCLUSION: Higher levels of moesin in serum may indicate impaired lung function and lymphatic involvement in patients with LAM, suggest a more serious condition, and provide clinical guidance for sirolimus treatment.


Assuntos
Linfangioleiomiomatose , Proteínas dos Microfilamentos , Humanos , Feminino , Linfangioleiomiomatose/diagnóstico , Fator D de Crescimento do Endotélio Vascular , Biomarcadores , Sirolimo
4.
Inorg Chem ; 63(1): 613-620, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38102774

RESUMO

The self-assembly of the lanthanide metal-organic frameworks presents a formidable challenge but profound significance. Compared with the metal-organic frameworks based on 4f-3d ions, the chemistry of 4f-3p metal-organic frameworks has not been fully explored so far. In this study, two lanthanide-aluminum-based clusters [Ln6Al(IN)10(µ3-OH)5(µ3-O)3(H2O)8]·xH2O (x = 2, Ln = Gd, abbreviated as Gd6Al; x = 2.5, Ln = Eu, abbreviated as Eu6Al; HIN = isonicotinic acid) have been meticulously designed and obtained by hydrothermal reaction at low pH. The crystallographic study revealed that both Gd6Al and Eu6Al clusters exhibit an unprecedented sandwiched metal-organic framework holding a highly ordered honeycomb network. To our knowledge, it is the first case of Ln-Al-based cluster-organic frameworks. Furthermore, magnetic investigation of Gd6Al manifests a decent magnetic entropy change of -ΔSmmax = 28.8 J kg-1 K-1 at 2 K for ΔH = 7.0 T. Significantly, the introduction of AlIII ions into the lanthanide metal-organic frameworks displays excellent solid-state luminescent capability with a lifetime of 371.6 µs and quantum yield of 6.64%. The construction and investigation of these two Ln-Al clusters represent great progress in the 4f-3p metal-organic framework.

5.
BMC Pulm Med ; 24(1): 76, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336682

RESUMO

BACKGROUND: Severe asthma places a large burden on patients and society. The characteristics of patients with severe asthma in the Chinese population remain unclear. METHODS: A retrospective review was conducted in patients with severe asthma. Demographic and clinical data were collected. Patients were grouped according to phenotypes in terms of exacerbations, body mass index (BMI) and fixed airway obstruction (FAO) status, and the characteristics of different groups were compared. Comorbidities, factors that influence asthma phenotypes, were also analyzed in the study. RESULTS: A total of 228 patients with severe asthma were included in our study. They were more likely to be overweight or obese. A total of 41.7% of the patients received GINA step 5 therapy, and 43.4% had a history of receiving regular or intermittent oral corticosteroids (OCS). Severe asthmatic patients with comorbidities were prone to have more asthma symptoms and decreased quality of life than patients without comorbidities. Patients with exacerbations were characterized by longer duration of asthma, poorer lung function, and worse asthma control. Overweight or obese patients tended to have more asthma symptoms, poorer lung function and more asthma-related comorbidities. Compared to patients without FAO, those in the FAO group were older, with longer duration of asthma and more exacerbations. CONCLUSION: The existence of comorbidities in patients with severe asthma could result in more asthma symptoms and decreased quality of life. Patients with exacerbations or with overweight or obese phenotypes were characterized by poorer lung function and worse asthma control. Patients with FAO phenotype tended to have more exacerbations.


Assuntos
Obstrução das Vias Respiratórias , Asma , Humanos , Sobrepeso/epidemiologia , Qualidade de Vida , Asma/tratamento farmacológico , Obstrução das Vias Respiratórias/epidemiologia , Obesidade/epidemiologia
6.
Soc Sci Med ; 352: 116995, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810506

RESUMO

The practice of family separation as a mechanism of oppression has a deep-rooted history in the U.S., manifesting in diverse contexts, including punitive migration policies. This systematic review aimed to provide a rigorous and updated synthesis of the research on family separation as a result of migration policies and its impacts on immigrants' mental health while making a distinction between forced family separation, family separation by constrained choices, and living with the fear of family separation. We systematically searched four bibliographic databases using keywords related to family separation, migration, transnational families, and mental health for peer-reviewed studies published in English on or before January 1st, 2022. Results of the review indicate that family separation or fear of it may result in depression, anxiety, behavioral and emotional issues, sleep disturbances, and stress or distress in affected children. Similarly, impacted parents or caregivers might experience stress or distress, depression, anxiety, and sleep disturbances. Findings call for migration policy changes prioritizing family unity and comprehensive mental health interventions to respond to the pervasive consequences of family separation or fear thereof among immigrants in the U.S.


Assuntos
Emigrantes e Imigrantes , Separação da Família , Humanos , Estados Unidos , Emigrantes e Imigrantes/psicologia , Emigrantes e Imigrantes/estatística & dados numéricos , Saúde Mental , Emigração e Imigração/legislação & jurisprudência , Ansiedade/psicologia
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124236, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615415

RESUMO

In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 µg/mL (R2 = 0.9878), and the detection limit was 41.95 µg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Benzidinas , Técnicas Biossensoriais , Colorimetria , Ouro , Limite de Detecção , Nanopartículas Metálicas , Mucina-1 , Mucina-1/análise , Mucina-1/sangue , Colorimetria/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Humanos , Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo
8.
Cell Signal ; 113: 110964, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956773

RESUMO

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Assuntos
Asma , NF-kappa B , Animais , Humanos , Camundongos , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Fator 10 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
PLoS One ; 19(2): e0292479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349923

RESUMO

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Assuntos
Diatomáceas , Estramenópilas , Humanos , Integrases/genética , Genoma Humano/genética , DNA , Genômica , Diatomáceas/genética , Estramenópilas/genética , Edição de Genes
10.
Redox Biol ; 75: 103303, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137584

RESUMO

BACKGROUND: The notable decline in the number of Tregs within Necrotizing enterocolitis (NEC) intestinal tissues,contribute to excessive inflammation and necrosis, yet the precise underlying factors remain enigmatic. Ferroptosis, a novel cell death stemming from a disrupted lipid redox metabolism, is the focus of this investigation. Specifically, this study delves into the ferroptosis of Treg cells in the context of NEC and observes the protective effects exerted by vitamin E intervention, which aims to mitigate ferroptosis of Treg cells. METHODS: To investigate the reduction of Treg cells in NEC intestine, we analyzed its association with ferroptosis from multiple angles. We constructed a mouse with a specific knockout of Gpx4 in Treg cells, aiming to examine the impact of Treg cell ferroptosis on NEC intestinal injury and localized inflammation. Ultimately, we employed vitamin E treatment to mitigate ferroptosis in NEC intestine's Treg cells, monitoring the subsequent amelioration in intestinal inflammatory damage. RESULTS: The diminution of Treg cells in NEC is attributed to ferroptosis stemming from diminished GPX4 expression. Gpx4-deficient Treg cells exhibit impaired immunosuppressive function and are susceptible to ferroptosis. This ferroptosis of Treg cells exacerbates intestinal damage and inflammatory response in NEC. Notably, Vitamin E can inhibit the ferroptosis of Treg cells, subsequently alleviating intestinal damage and inflammation in NEC. Additionally, Vitamin E bolsters the anti-lipid peroxidation capability of Treg cells by upregulating the expression of GPX4. CONCLUSION: In the context of NEC, the ferroptosis of Treg cells represents a significant factor contributing to intestinal tissue damage and an exaggerated inflammatory response. GPX4 is pivotal for the viability and functionality of Treg cells. Vitamin E exhibits the capability to mitigate the ferroptosis of Treg cells, thereby enhancing their number and function, which plays a crucial role in mitigating intestinal tissue damage and inflammatory response in NEC.

11.
J Hazard Mater ; 477: 135093, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088948

RESUMO

Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.


Assuntos
Epigênese Genética , Histona Desacetilases , Material Particulado , Regulação para Cima , Animais , Material Particulado/toxicidade , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Epigênese Genética/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Camundongos , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inflamação , Nanopartículas/química , Nanopartículas/toxicidade , Camundongos Endogâmicos C57BL , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Masculino
12.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38216081

RESUMO

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Edaravone/farmacologia , Edaravone/uso terapêutico , Citocinas/metabolismo , Endorribonucleases/metabolismo , Peróxido de Hidrogênio/farmacologia , Linfócitos , Proteínas Serina-Treonina Quinases/metabolismo , Asma/metabolismo , Pulmão , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Oxidantes/farmacologia , Pyroglyphidae/metabolismo , Modelos Animais de Doenças
13.
Emerg Microbes Infect ; 13(1): 2382235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39017655

RESUMO

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection. Single cell transcriptomics of a mixed neuronal population reveal higher viral RNA load in motor neurons, suggesting higher infectivity and replication of EV-A71 in motor neurons. The elevated RNA load in motor neurons correlates with the downregulation of ferritin-encoding genes. Subsequent analysis confirms that neurons infected with EV-A71 undergo ferroptosis, as evidenced by increased levels of labile Fe2+ and peroxidated lipids. Notably, the Fe2+ chelator Deferoxamine improves mitochondrial function and promotes survival of motor neurons by 40% after EV-A71 infection. These findings deepen understanding of the molecular pathogenesis of EV-A71 infection, providing insights which suggest that improving mitochondrial respiration and inhibition of ferroptosis can mitigate the impact of EV-A71 infection in the central nervous system.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Ferroptose , Neurônios Motores , Ferroptose/efeitos dos fármacos , Humanos , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Enterovirus Humano A/efeitos dos fármacos , Neurônios Motores/virologia , Neurônios Motores/metabolismo , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Replicação Viral , Mitocôndrias/metabolismo , Desferroxamina/farmacologia , Carga Viral , Ferro/metabolismo , Ferritinas/metabolismo , Ferritinas/genética
14.
Cell Rep ; 43(8): 114636, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154340

RESUMO

Inflammatory bowel disease (IBD) has high prevalence in Western counties. The high fat content in Western diets is one of the leading causes for this prevalence; however, the underlying mechanisms have not been fully defined. Here, we find that high-fat diet (HFD) induces ferroptosis of intestinal regulatory T (Treg) cells, which might be the key initiating step for the disruption of immunotolerance and the development of colitis. Compared with effector T cells, Treg cells favor lipid metabolism and prefer polyunsaturated fatty acids (PUFAs) for the synthesis of membrane phospholipids. Therefore, consumption of HFD, which has high content of PUFAs such as arachidonic acid, cultivates vulnerable Tregs that are fragile to lipid peroxidation and ferroptosis. Treg-cell-specific deficiency of GPX4, the key enzyme in maintaining cellular redox homeostasis and preventing ferroptosis, dramatically aggravates the pathogenesis of HFD-induced IBD. Taken together, these studies expand our understanding of IBD etiology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa