Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(7): e103304, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104923

RESUMO

Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.


Assuntos
Ácidos Cetoglutáricos/sangue , Atrofia Muscular/genética , Receptores Purinérgicos P2/genética , Treinamento Resistido/métodos , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2/metabolismo
2.
BMC Vet Res ; 18(1): 218, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689199

RESUMO

BACKGROUND: This study examined the effects of a solid-state fermented feed additive (FFA) on the small intestine histology/morphology, immunity and microbiota of broilers. Two hundred eighty-eight day-old Arbor Acre chicks, were randomly assigned to one of four groups (each group has 6 replicates, with each replicate containing 12 chickens). The negative control (NC; basal diet), the positive control (PC; basal diet +antibiotic 15 ppm), the fermented feed additive low dose (FFL; basal diet + 0.3 kg/t FFA), and the fermented feed additive high dose (FFH; 3 kg/t FFA) with Lactobacillus casei (L.casei). RESULTS: The study found that the FFH and FFL groups gained more weight (1-21d) and the FFL and PC diets had better feed conversion ratio (P < 0.05) than the NC from 0-42d. The FFH group had higher villus height (P < 0.05) in the duodenum than the PC and villus height to crypt depth ratio VH/CD compared to PC and FFL groups. The FFL chickens had greater (P < 0.05) jejunal and ileal villus height than PC and NC groups respectively. The FFL group had a higher ileal VH/CD ratio (P < 0.05). Jejunum VH/CD was higher in FFL and FFH (P < 0.05) than PC (P < 0.05). FFH had a smaller thymus than NC (P < 0.05). FFA diets also increased IL-10 expression (P < 0.05). While IL-1 and TLR4 mRNA expression decreased (P < 0.05) compared to NC. The microbiota analysis showed that the microorganisms that have pathogenic properties such as phylum Delsulfobacterota and class Desulfovibriona and Negativicutes was also significantly reduced in the group treated with FFH and PC while microorganisms having beneficial properties like Lactobacillaceae family, Lactobacillus aviarus genus and Lactobacillus spp were also tended to increase in the FFH and FFL fermented feed groups compared to the PC and NC groups. CONCLUSION: These findings suggested that the FFA diet may modulate cecal microbiota by reducing pathogenic microorganisms such as phylum Delsulfobacterota and class Desulfovibriona and Negativicutes improve beneficial microorganisms like Lactobacillaceae family, Lactobacillus aviarus genus and Lactobacillus spp. While FFA diet also affect immunity, and gene expression related to immunity.


Assuntos
Galinhas , Microbiota , Ração Animal/análise , Animais , Ceco , Galinhas/anatomia & histologia , Dieta/veterinária , Suplementos Nutricionais/análise
4.
Food Sci Nutr ; 11(8): 4547-4561, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576064

RESUMO

The beneficial effect of probiotics on host health is impaired due to the substantial loss of survivability during gastric transit caused by small intestinal enzymes and bile acids. Encapsulation helps to preserve the probiotics species from severe environmental factors. Lactobacillus paracasei, highly sensitive probiotic species to gastric acid, was encapsulated with polyacrylate resin. C57BL/6 male mice were equally divided into three groups; control group was fed with basal diet without any additives, the un-encapsulated group was fed with 0.1% of a mixture of encapsulating material and L. paracasei, and encapsulated group was fed with 0.1% encapsulated L. paracasei (microcapsule) for 4 weeks. The result showed elevated fecal moisture percentage in the encapsulated group, but not in the un-encapsulated group. Further study showed that the ratio of villus height to crypt depth in the small intestine was significantly higher compared to un-encapsulated and the control group. Microencapsulated probiotics also remarkably increased intestinal mucin and secretory immunoglobulin A (sIgA) concentration, intestinal MUC-2, and tight junction protein mRNA expression levels improving the intestinal barrier function of mice. In addition, microcapsules also reduced proinflammatory factor mRNA expression, while considerably increasing anti-inflammatory factor mRNA expression. Microbiota metabolites, fecal LPS (Lipopolysaccharide) were downregulated, and acetate and lactate were upraised compared to control. Furthermore, glutathione peroxidase (GSH-Px) and TAOC levels were increased and Malondialdehyde (MDA) was decreased improving antioxidant capacity. Microflora and bioinformatic predictive analysis of feces showed that encapsulated probiotics remarkably increased Lactobacillus proportions. Mice's intestinal health can thus be improved by using microencapsulated probiotics.

5.
Poult Sci ; 101(8): 101912, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689995

RESUMO

The beneficial action of probiotics is questioned time and again due to the loss of their survivability under gastrointestinal conditions, particularly gastric acid. In this experiment, a probiotic species was encapsulated to improve its delivery to the distal parts, and its effects on production performance, gut health, and microbial profile in broilers were investigated. A total of 240 Arbor acres (AA) broilers were randomly allotted into 3 treatments with 8 replicate pens per treatment and 10 broilers in each pen for 42 d. Dietary treatments were 1) basal feed without any additives (CON), 2) CON+15 ppm Virginiamycin (ANT), and 3) CON+500 ppm encapsulated Lactobacillus paracaesi (ELP). The result showed that the addition of ELP to the feed did not affect growth performance and carcass characteristics significantly. However, ELP increased the ratio of villus height to crypt depth (P < 0.05) and mRNA expression of ZO-1 (P < 0.05) relative to the CON or ANT group. Similarly, qPCR showed that dietary supplementation of ELP raised gene expression of the anti-inflammatory cytokine and tended to decrease proinflammatory cytokines resulting improve in immunity. Moreover, chicks fed with ELP had lower malondialdehyde (MDA) (P < 0.05) than CON and lower reactive oxygen species (ROS) (P < 0.05) level than ANT in serum. In contrast, the total antioxidant capacity (TAOC) level was tended to increase. The ammonia level of ileum and cecum chyme was decreased (P < 0.05) in the ELP group than CON while the level of propionic acid of cecal content was increased (P < 0.05). 16S rRNA sequencing revealed the dietary treatment modulated the diversity and composition of cecal microflora. At the phylum level, Bacteroidetes was enriched, and Proteobacteria was depleted in the ELP group. At the genus level, ELP increased Bacteroides (P < 0.05) compared to control. The results indicate that oral delivery of probiotics via microcapsule could impart beneficial effects on birds and be used as an alternative to antibiotics.


Assuntos
Microbiota , Probióticos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cápsulas , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Lactobacillus , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa