Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
HPB (Oxford) ; 26(1): 21-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37805364

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of mortality in sub-Saharan Africa (SSA). This systematic review aimed to appraise all population-based studies describing the management and outcomes of HCC in SSA. METHODS: A systematic review based on a search in PubMed, PubMed Central, Scopus, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), AfricaWide and Cochrane up to June 2023 was performed. PRISMA guidelines for systematic reviews were followed. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (registration no: CRD42022363955). RESULTS: Thirty-nine publications from 15 of 48 SSA countries were identified; 3989 patients were studied. The majority (74%) were male, with median ages ranging from 28 to 54 years. Chronic Hepatitis B infection was a leading aetiology and non-cirrhotic HCC was frequently reported. Curative treatment (liver resection, transplantation and ablation) was offered to 6% of the cohort. Most patients (84%) received only best supportive care (BSC), with few survivors at one year. CONCLUSION: The majority of SSA countries do not have data reporting outcomes for HCC. Most patients receive only BSC, and curative treatment is seldom available in the region. Outcomes are poor compared to high-income countries.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , África Subsaariana/epidemiologia , Projetos de Pesquisa
2.
Purinergic Signal ; 13(3): 279-292, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28397110

RESUMO

Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5'-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.


Assuntos
Proliferação de Células/genética , Sobrevivência Celular/genética , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago , Humanos
3.
Future Oncol ; 12(1): 43-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26615920

RESUMO

PURPOSE: Targeted proteomics of potential biomarkers is often challenging. Hence, we developed an intermediate workflow to streamline potential urinary biomarkers of prostate cancer (PCa). MATERIALS & METHODS: Using previously discovered potential PCa biomarkers; we selected proteotypic peptides for targeted validation. Preliminary in silico immunohistochemical and single reaction monitoring (SRM) verification was performed. Successful PTPs were then prevalidated using parallel reaction monitoring (PRM) and reconfirmed in 15 publicly available databases. RESULTS: Stringency-based targetable potential biomarkers were shortlisted following in silico screening. PRM reveals top 12 potential biomarkers including the top ranking seven in silico verification-based biomarkers. Database reconfirmation showed differential expression between PCa and benign/normal prostatic urine samples. CONCLUSION: The pragmatic penultimate screening step, described herein, would immensely improve targeted proteomics validation of potential disease biomarkers.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata/urina , Proteômica , Biomarcadores Tumorais/urina , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Neoplasias/urina , Neoplasias da Próstata/patologia
4.
Int J Cancer ; 134(5): 1024-33, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23649974

RESUMO

The receptor tyrosine kinase Axl has been implicated in the malignancy of different types of cancer. Emerging evidence of Axl upregulation in numerous cancers, as well as reports demonstrating that its inhibition blocks tumor formation in animal models, highlight the importance of Axl as a new potential therapeutic target. Furthermore, recent data demonstrate that Axl plays a pivotal role in resistance to chemotherapeutic regimens. In this review we discuss the functions of Axl and its regulation and role in cancer development, resistance to therapy, and its importance as a potential drug target, focusing on acute myeloid leukemia, breast, prostate and non-small cell lung cancers.


Assuntos
Neoplasias/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Neoplasias da Mama/etiologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Leucemia Mieloide/etiologia , Neoplasias Pulmonares/etiologia , Masculino , Neoplasias/tratamento farmacológico , Neoplasias da Próstata/etiologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor Tirosina Quinase Axl
5.
Biochem Cell Biol ; 92(2): 95-104, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24697693

RESUMO

Cervical cancer is the third most frequent cancer in women worldwide. Adenine nucleotide signaling is modulated by the ectonucleotidases that act in sequence, forming an enzymatic cascade. Considering the relationship between the purinergic signaling and cancer, we studied the E-NTPDases, ecto-5'-nucleotidase, and E-NPPs in human cervical cancer cell lines and keratinocytes. We evaluated the expression profiles of these enzymes using RT-PCR and quantitative real-time PCR analysis. The activities of these enzymes were examined using ATP, ADP, AMP, and p-nitrophenyl-5'-thymidine monophosphate (p-Nph-5'-TMP) as substrate, in a colorimetric assay. The extracellular adenine nucleotide hydrolysis was estimated by HPLC analysis. The hydrolysis of all substrates exhibited a linear pattern and these activities were cation-dependent. An interesting difference in the degradation rate was observed between cervical cancer cell lines SiHa, HeLa, and C33A and normal imortalized keratinocytes, HaCaT cells. The mRNA of ecto-5'-nucleotidase, E-NTPDases 5 and 6 were detectable in all cell lines, and the dominant gene expressed was the Entpd 5 enzyme, in SiHa cell line (HPV16 positive). In accordance with this result, a higher hydrolysis activity for UDP and GDP nucleotides was observed in the supernatant of the SiHa cells. Both normal and cancer cells presented activity and mRNAs of members of the NPP family. Considering that these enzymes exert an important catalytic activity, controlling purinergic nucleotide concentrations in tumors, the presence of ectonucleotidases in cervical cancer cells can be important to regulate the levels of extracellular adenine nucleotides, limiting their effects.


Assuntos
5'-Nucleotidase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Neoplasias do Colo do Útero/metabolismo , 5'-Nucleotidase/genética , Nucleotídeos de Adenina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Expressão Gênica , Humanos , Hidrólise , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167308, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885797

RESUMO

Cancer affects millions of people and understanding the molecular mechanisms related to disease development and progression is essential to manage the disease. Post-translational modification (PTM) processes such as ubiquitination and neddylation have a significant role in cancer development and progression by regulating protein stability, function, and interaction with other biomolecules. Both ubiquitination and neddylation are analogous processes that involves a series of enzymatic steps leading to the covalent attachment of ubiquitin or NEDD8 to target proteins. Neddylation modifies the CRL family of E3 ligase and regulates target proteins' function and stability. The DCUN1D1 protein is a regulator of protein neddylation and ubiquitination and acts promoting the neddylation of the cullin family components of E3-CRL complexes and is known to be upregulated in several types of cancers. In this review we compare the PTM ubiquitination and neddylation. Our discussion is focused on the neddylation process and the role of DCUN1D1 protein in cancer development. Furthermore, we provide describe DCUN1D1 protein and discuss its role in pathogenesis and signalling pathway in six different types of cancer. Additionally, we explore both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions. We focus our analysis on the development of compounds that target specifically neddylation or DCUN1D1. Finally, we provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research. KEY POINTS: Neddylation is a post-translational modification that regulates target proteins' function and stability. One regulator of the neddylation process is a protein named DCUN1D1 and it is known to have its expression deregulated in several types of cancers. Here, we provide a detailed description of DCUN1D1 structure and its consequence for the development of cancer. We discuss both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions and provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research.

7.
Genes (Basel) ; 15(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38674385

RESUMO

Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
8.
Bioinform Adv ; 3(1): vbad053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424942

RESUMO

Summary: Computational analysis and interpretation of metabolomic profiling data remains a major challenge in translational research. Exploring metabolic biomarkers and dysregulated metabolic pathways associated with a patient phenotype could offer new opportunities for targeted therapeutic intervention. Metabolite clustering based on structural similarity has the potential to uncover common underpinnings of biological processes. To address this need, we have developed the MetChem package. MetChem is a quick and simple tool that allows to classify metabolites in structurally related modules, thus revealing their functional information. Availabilityand implementation: MetChem is freely available from the R archive CRAN (http://cran.r-project.org). The software is distributed under the GNU General Public License (version 3 or later).

9.
Cells ; 12(15)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37566052

RESUMO

Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise role of DCUN1D1 in prostate cancer (PCa) has not been previously explored thoroughly. Here, we investigated the role of DCUN1D1 in PCa and demonstrated that DCUN1D1 is upregulated in cell lines as well as human tissue samples. Inhibition of DCUN1D1 significantly reduced PCa cell proliferation and migration and remarkably inhibited xenograft formation in mice. Applying both genomics and proteomics approaches, we provide novel information about the DCUN1D1 mechanism of action. We identified CUL3, CUL4B, RBX1, CAND1 and RPS19 proteins as DCUN1D1 binding partners. Our analysis also revealed the dysregulation of genes associated with cellular growth and proliferation, developmental, cell death and cancer pathways and the WNT/ß-catenin pathway as potential mechanisms. Inhibition of DCUN1D1 leads to the inactivation of ß-catenin through its phosphorylation and degradation which inhibits the downstream action of ß-catenin, reducing its interaction with Lef1 in the Lef1/TCF complex that regulates Wnt target gene expression. Together our data point to an essential role of the DCUN1D1 protein in PCa which can be explored for potential targeted therapy.


Assuntos
Proteínas Culina , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , beta Catenina , Cateninas , Proliferação de Células , Proteínas Culina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/metabolismo , Via de Sinalização Wnt
10.
IUBMB Life ; 64(7): 636-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22576850

RESUMO

Ovarian cancer (OC) is one of the most lethal gynaecological cancers, which usually has a poor prognosis due to late diagnosis. A large percentage of the OC cell population is in a nonproliferating and quiescent stage, which poses a barrier to success when using most chemotherapeutic agents. Recent studies have shown that several nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in the treatment of OC. Furthermore, we have previously described the molecular mechanisms of NSAIDs' induction of cancer apoptosis. In this report, we evaluated various structurally distinct NSAIDs for their efficacies in inducing apoptosis in nonproliferating OC cells. Although several NSAIDs-induced apoptosis, Flufenamic Acid, Flurbiprofen, Finasteride, Celocoxib, and Ibuprofen were the most potent NSAIDs inducing apoptosis. A combination of these agents resulted in an enhanced effect. Furthermore, we demonstrate that the combination of Flurbiprofen, which targets nonproliferative cells, and Sulindac Sulfide, that affects proliferative cells, strongly reduced tumor growth when compared with a single agent treatment. Our data strongly support the hypothesis that drug treatment regimens that target nonproliferating and proliferating cells may have significant efficacy against OC. These results also provide a rationale for employing compounds or even chemically modified NSAIDs, which selectively and efficiently induce apoptosis in cells during different stages of the cell cycle, to design more potent anticancer drugs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Neoplasias Ovarianas/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias Ovarianas/metabolismo
11.
Future Oncol ; 8(11): 1461-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23148618

RESUMO

The neddylation conjugation pathway has a pivotal role in mediating ubiquitination of proteins and regulation of numerous biological processes. Dysregulation in the ubiquitination and neddylation pathways is associated with many cancers. Ubiquitination involves covalent attachment of ubiquitin to target proteins, leading to protein degradation by the proteasome system. The activity of the E3-ubiquitin ligase family, cullin-RING ligases, is essential for promoting ubiquitin transfer to the appropriate substrates. Neddylation, a process mediated by the protein NEDD8, is required for conformational changes of cullins, a scaffolding protein situated in the core of cullin-RING ligases, and regulation of E3 ligase activity. In this review, we present a comprehensive discussion of the recent findings on the neddylation pathway and its importance during tumorigenesis. The ramifications regarding the potential therapeutic use of ubiquination and neddylation inhibition are also discussed.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Terapia de Alvo Molecular , Ubiquitinação/efeitos dos fármacos
12.
Front Cell Infect Microbiol ; 12: 977157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268228

RESUMO

Increased levels of 17-ß estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments' conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence.


Assuntos
Candida albicans , Hifas , Feminino , Humanos , Parede Celular/metabolismo , Ergosterol/metabolismo , Ácidos Graxos/metabolismo , Estrogênios/farmacologia , Polissacarídeos/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Carboidratos , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Regulação Fúngica da Expressão Gênica
13.
J Biol Chem ; 285(11): 8395-407, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20048163

RESUMO

GADD45beta (growth arrest- and DNA damage-inducible) interacts with upstream regulators of the JNK and p38 stress response kinases. Previously, we reported that the hypertrophic zone of the Gadd45beta(-/-) mouse embryonic growth plate is compressed, and expression of type X collagen (Col10a1) and matrix metalloproteinase 13 (Mmp13) genes is decreased. Herein, we report that GADD45beta enhances activity of the proximal Col10a1 promoter, which contains evolutionarily conserved AP-1, cAMP-response element, and C/EBP half-sites, in synergism with C/EBP family members, whereas the MMP13 promoter responds to GADD45beta together with AP-1, ATF, or C/EBP family members. C/EBPbeta expression also predominantly co-localizes with GADD45beta in the embryonic growth plate. Moreover, GADD45beta enhances C/EBPbeta activation via MTK1, MKK3, and MKK6, and dominant-negative p38alphaapf, but not JNKapf, disrupts the combined trans-activating effect of GADD45beta and C/EBPbeta on the Col10a1 promoter. Importantly, GADD45beta knockdown prevents p38 phosphorylation while decreasing Col10a1 mRNA levels but does not affect C/EBPbeta binding to the Col10a1 promoter in vivo, indicating that GADD45beta influences the transactivation function of DNA-bound C/EBPbeta. In support of this conclusion, we show that the evolutionarily conserved TAD4 domain of C/EBPbeta is the target of the GADD45beta-dependent signaling. Collectively, we have uncovered a novel molecular mechanism linking GADD45beta via the MTK1/MKK3/6/p38 axis to C/EBPbeta-TAD4 activation of Col10a1 transcription in terminally differentiating chondrocytes.


Assuntos
Antígenos de Diferenciação/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Condrócitos/citologia , Condrócitos/fisiologia , Colágeno Tipo X/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Fator 1 Ativador da Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/citologia , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/fisiologia , Humanos , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/fisiologia , Teratocarcinoma , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Braz J Microbiol ; 42(1): 340-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031640

RESUMO

Human Respiratory Syncytial Virus P protein plus the viral RNA, N and L viral proteins, constitute the viral replication complex. In this report we describe that HRSV P protein has putative intrinsically disordered domains predicted by in silico methods. These two domains, located at the amino and caboxi terminus, were identified by mass spectrometry analysis of peptides obtained from degradation fragments observed in purified P protein expressed in bacteria. The degradation is not occurring at the central oligomerization domain, since we also demonstrate that the purified fragments are able to oligomerize, similarly to the protein expressed in cells infected by HRSV. Disordered domains can play a role in protein interaction, and the present data contribute to the comprehension of HRSV P protein interactions in the viral replication complex.

15.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806258

RESUMO

Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.

16.
Metabolites ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a characteristic dysregulated metabolism. Abnormal clinicopathological features linked to defective metabolic and inflammatory response pathways can induce PDAC development and progression. In this study, we investigated the metabolites and lipoproteins profiles of PDAC patients of African ancestry. Nuclear Magnetic Resonance (NMR) spectroscopy was conducted on serum obtained from consenting individuals (34 PDAC, 6 Chronic Pancreatitis, and 6 healthy participants). Seventy-five signals were quantified from each NMR spectrum. The Liposcale test was used for lipoprotein characterization. Spearman's correlation and Kapan Meier tests were conducted for correlation and survival analyses, respectively. In our patient cohort, the results demonstrated that levels of metabolites involved in the glycolytic pathway increased with the tumour stage. Raised ethanol and 3-hydroxybutyrate were independently correlated with a shorter patient survival time, irrespective of tumour stage. Furthermore, increased levels of bilirubin resulted in an abnormal lipoprotein profile in PDAC patients. Additionally, we observed that the levels of a panel of metabolites (such as glucose and lactate) and lipoproteins correlated with those of inflammatory markers. Taken together, the metabolic phenotype can help distinguish PDAC severity and be used to predict patient survival and inform treatment intervention.

17.
PLoS One ; 16(12): e0259588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34874940

RESUMO

Candida albicans is the leading cause of life-threatening bloodstream candidiasis, especially among immunocompromised patients. The reversible morphological transition from yeast to hyphal filaments in response to host environmental cues facilitates C. albicans tissue invasion, immune evasion, and dissemination. Hence, it is widely considered that filamentation represents one of the major virulence properties in C. albicans. We have previously characterized Ppg1, a PP2A-type protein phosphatase that controls filament extension and virulence in C. albicans. This study conducted RNA sequencing analysis of samples obtained from C. albicans wild type and ppg1Δ/Δ strains grown under filament-inducing conditions. Overall, ppg1Δ/Δ strain showed 1448 upregulated and 710 downregulated genes, representing approximately one-third of the entire annotated C. albicans genome. Transcriptomic analysis identified significant downregulation of well-characterized genes linked to filamentation and virulence, such as ALS3, HWP1, ECE1, and RBT1. Expression analysis showed that essential genes involved in C. albicans central carbon metabolisms, including GDH3, GPD1, GPD2, RHR2, INO1, AAH1, and MET14 were among the top upregulated genes. Subsequent metabolomics analysis of C. albicans ppg1Δ/Δ strain revealed a negative enrichment of metabolites with carboxylic acid substituents and a positive enrichment of metabolites with pyranose substituents. Altogether, Ppg1 in vitro analysis revealed a link between metabolites substituents and filament formation controlled by a phosphatase to regulate morphogenesis and virulence.


Assuntos
Candida albicans/patogenicidade , Carbono/metabolismo , Fosfoproteínas Fosfatases/genética , Candida albicans/genética , Candida albicans/metabolismo , Ácidos Carboxílicos/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Essenciais , Hifas/metabolismo , Hifas/patogenicidade , Metabolômica , Análise de Sequência de RNA , Fatores de Virulência/genética
18.
Cancer Metab ; 9(1): 29, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344464

RESUMO

BACKGROUND: Men with African ancestry are more likely to develop aggressive prostate cancer (PCa) and to die from this disease. The study of PCa in the South African population represents an opportunity for biomedical research due to the high prevalence of aggressive PCa. While inflammation is known to play a significant role in PCa progression, its association with tumor stage in populations of African descent has not been explored in detail. Identification of new metabolic biomarkers of inflammation may improve diagnosis of patients with aggressive PCa. METHODS: Plasma samples were profiled from 41 South African men with PCa using nuclear magnetic resonance (NMR) spectroscopy. A total of 41 features, including metabolites, lipid classes, total protein, and the inflammatory NMR markers, GlycA, and GlycB, were quantified from each NMR spectrum. The Bruker's B.I.-LISA protocols were used to characterize 114 parameters related to the lipoproteins. The unsupervised KODAMA method was used to stratify the patients of our cohort based on their metabolic profile. RESULTS: We found that the plasma of patients with very high risk, aggressive PCa and high level of C-reactive protein have a peculiar metabolic phenotype (metabotype) characterized by extremely high levels of GlycA and GlycB. The inflammatory processes linked to the higher level of GlycA and GlycB are characterized by a deep change of the plasma metabolome that may be used to improve the stratification of patients with PCa. We also identified a not previously known relationship between high values of VLDL and low level of GlycB in a different metabotype of patients characterized by lower-risk PCa. CONCLUSIONS: For the first time, a portrait of the metabolic changes in African men with PCa has been delineated indicating a strong association between inflammation and metabolic profiles. Our findings indicate how the metabolic profile could be used to identify those patients with high level of inflammation, characterized by aggressive PCa and short life expectancy. Integrating a metabolomic analysis as a tool for patient stratification could be important for opening the door to the development of new therapies. Further investigations are needed to understand the prevalence of an inflammatory metabotype in patients with aggressive PCa.

19.
Eur J Pharmacol ; 891: 173687, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130276

RESUMO

Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.


Assuntos
Adenocarcinoma/enzimologia , Carcinoma de Células Escamosas/enzimologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Trifosfato de Adenosina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Uridina Trifosfato/farmacologia
20.
Cancer Res ; 67(9): 4219-26, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483333

RESUMO

The epithelium-specific Ets transcription factor, PDEF, plays a role in prostate and breast cancer, although its precise function has not been established. In prostate cancer, PDEF is involved in regulating prostate-specific antigen expression via interaction with the androgen receptor and NKX3.1, and down-regulation of PDEF by antiproliferative agents has been associated with reduced PDEF expression. We now report that reduced expression of PDEF leads to a morphologic change, increased migration and invasiveness in prostate cancer cells, reminiscent of transforming growth factor beta (TGFbeta) function and epithelial-to-mesenchymal transition. Indeed, inhibition of PDEF expression triggers a transcriptional program of genes involved in the TGFbeta pathway, migration, invasion, adhesion, and epithelial dedifferentiation. Our results establish PDEF as a critical regulator of genes involved in cell motility, invasion, and adhesion of prostate cancer cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-ets/biossíntese , Adesão Celular/genética , Linhagem Celular Tumoral , Células Epiteliais/patologia , Humanos , Integrinas/genética , Integrinas/metabolismo , Masculino , Mesoderma/patologia , Invasividade Neoplásica , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa