Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171310, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423312

RESUMO

In the Karst Critical Zone (KCZ), mining and urbanization activities produce multiple pollutants, posing a threat to the vital groundwater and surface water resources essential for drinking and irrigation. Despite their importance, the interactions between these pollutants in the intricate hydrology and land use of the KCZ remain poorly understood. In this study, we unraveled the transformation mechanisms and sources of nitrogen, sulfate, and carbon using multiple isotopes and the MixSIAR model, following hydrology and surface analyses conducted in spatial modelling with ArcGIS. Our results revealed frequent exchange between groundwater and surface water, as evidenced by the analysis of δD-H2O and δ18O-H2O. Nitrification predominantly occurred in surface water, although denitrification also made a minor contribution. Inorganic nitrogen in both groundwater and surface water primarily originated from soil nitrogen (48 % and 49 %, respectively). Sewage and manure were secondary sources of inorganic nitrogen in surface water, accounting for 41 % in urban and 38 % in mining areas. Notably, inorganic sulfur oxidation displayed significant spatial disparities between urban and mining areas, rendering groundwater more susceptible to sulfur pollution compared to surface water. The frequent interchange between groundwater and surface water posed a higher pollution risk to groundwater. Furthermore, the primary sources of CO2 and HCO3- in both groundwater and surface water were water­carbonate reactions and soil respiration. Sulfide oxidation was found to enhance carbonate dissolution, leading to increased CO2 release from carbonate dissolution in the KCZ. These findings enhance our understanding of the transformation mechanisms and interactions of nitrogen, sulfur, and carbon in groundwater and surface water. This knowledge is invaluable for accurately controlling and treating water pollution in the KCZ.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36674187

RESUMO

Gold mining is associated with serious heavy metal pollution problems. However, the studies on such pollution caused by gold mining in specific geological environments and extraction processes remain insufficient. This study investigated the accumulation, fractions, sources and influencing factors of arsenic and heavy metals in the sediments from a gold mine area in Southwest China and also assessed their pollution and ecological risks. During gold mining, As, Sb, Zn, and Cd in the sediments were affected, and their accumulation and chemical activity were relatively high. Gold mining is the main source of As, Sb, Zn and Cd accumulation in sediments (over 40.6%). Some influential factors cannot be ignored, i.e., water transport, local lithology, proportion of mild acido-soluble fraction (F1) and pH value. In addition, arsenic and most tested heavy metals have different pollution and ecological risks, especially As and Sb. Compared with the other gold mining areas, the arsenic and the heavy metal sediments in the area of this study have higher pollution and ecological risks. The results of this study show that the local government must monitor potential environmental hazards from As and Sb pollution to prevent their adverse effects on human beings. This study also provides suggestions on water protection in the same type of gold-mining areas.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Humanos , Ouro , Cádmio , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Medição de Risco/métodos , Metais Pesados/análise , China , Mineração , Água
3.
Huan Jing Ke Xue ; 43(11): 5084-5095, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437080

RESUMO

Mining activities change the groundwater level and flow conditions through pumping and drainage, which enhances the interaction between groundwater and aquifer rocks; mine drainage is discharged into the surface water system, which affects the whole karst water hydrogeochemical process. Based on hydrogeochemistry and the δ34S isotope, the hydrogeochemical processes, characteristics, and main controlling factors for waste water, karst groundwater, and surface water in a typical Carlin gold mining area and its surrounding areas were revealed. The results showed that:chemical compositions of groundwater and surface water unaffected by gold mining activities were mainly controlled by the weathering of limestone and dolomitic limestone; Ca2+, Mg2+, and HCO3- were main ions; and the water chemical types were Ca-HCO3. The mine wastewater and its downstream receiving water were affected by the dissolution of carbonate and silicate minerals, and cation exchange also played a role; the main ions were Ca2+, Mg2+, Na+, and SO42-, and the hydrochemical type gradually evolved from Ca-HCO3 to Ca-SO4. SO42- was the characteristic component in various water bodies affected by mining, and the concentration of SO42- gradually decreased from top to bottom in the well. The values of δ34S for unaffected groundwater and surface water were positive, and SO42- was mainly derived from realgar oxidation. Conversely, mine wastewater and downstream water were negative, SO42- was mainly influenced by the mixing action of realgar oxidation and meteoric precipitation, and pyrite also contributed to a certain extent. At the same time, NO3- came from agricultural fertilizer and rural domestic sewage discharge directly. Principal component analysis (PCA) further demonstrated:sulfide mineral oxidation and mining activities were the main controlling factors for the water chemical composition of mine wastewater and downstream water, whereas unaffected groundwater and surface water were mainly influenced by water-rock (carbonate rock) interactions. Agricultural fertilizer and rural sewage discharge also had a certain influence. Therefore, the study area should strengthen the interception of surface water, control-block-management of sulfide oxidation, rural domestic sewage treatment, and agricultural fertilizer.


Assuntos
Ouro , Águas Residuárias , Esgotos , Fertilizantes , Isótopos de Enxofre , Carbonato de Cálcio , Mineração , Sulfetos
4.
Environ Sci Pollut Res Int ; 25(2): 1220-1230, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29082473

RESUMO

Zhijin coal-mining district, located in Midwestern Guizhou Province, has been extensively exploited for several decades. The discharge of acid mine drainage (AMD) has constituted a serious threat to local water environmental quality, which greatly affected the normal use of local people. The Permian limestone aquifer is the essential potable water supply for local people, which covered under the widely distributed coal seams. To investigate the origin of the water, the evolutionary processes, and the sources of dissolved sulfate in the karst waters, the mine water, surface water, and groundwater near the coal mines were sampled for stable isotopes (H, O, and S) and conventional hydrochemical analysis. The results of hydrochemistry and isotopic composition indicate that the regional surface water and partial karst groundwater are obviously affected by coal-mining activities, which is mainly manifested in the increase of water solute concentration and the change of hydrochemical types. The isotopic composition of δ2HH2O and δ18OH2O indicates that the major recharge source of surface water and the groundwater is atmospheric precipitation and that it is influenced obviously by evaporation in the recharge process. The surface water is mainly controlled by the oxidation of pyrite, as well as the dissolution of carbonate rocks, whereas that of natural karst waters is influenced by the dissolution of carbonate rocks. The resulting δ34SSO4 values suggest that the dissolved sulfate source in the surface water is mainly pyrite oxidation but atmospheric precipitation for the karst groundwater. Given the similar chemistry and isotopic composition between surface water and partial groundwater, it is reasonable to assume that most of the dissolved sulfate source in part of the groundwater was derived through the oxidation of pyrite in the coal. Furthermore, the contamination of the surface water and partial groundwater from the coal seam has occurred distinctly in the catchment, which is enriched in SO42- and is mostly depleted δ34S in sulfate.


Assuntos
Minas de Carvão , Monitoramento Ambiental , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água , Carbonatos/química , China , Carvão Mineral/análise , Ferro/química , Isótopos/análise , Sulfatos/análise , Sulfetos/química
5.
Environ Sci Pollut Res Int ; 25(18): 18038-18048, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691742

RESUMO

The generation of acid mine drainage (AMD) may accelerate watershed erosion and promote the migration of heavy metals, then threaten local ecosystems such as aquatic life and even human health. Previous studies have focused primarily on influence of AMD in surface environment. In order to reveal the acidizing processes in karst high-sulfur coalfield in Southwest China, this study, by contrast, focused on the hydrogeochemical evolution process and acidification mechanism of mine water in Zhijin coalfield, western Guizhou Province. The oxidation of pyrite and other sulfides induced strong acidification of mine water according to the water chemical analysis. As a result, a series of geochemical processes such as dissolution of carbonates and silicates, hydrolysis of metal ions, and degassing of CO2 complicated water chemical evolution. The dissolution of silicates controlled the chemical composition of mine water, but more carbonates might be dissolved during the acidification of mine water. The sources of sulfate are quite different in water samples collected from the two selected mine. According to sulfur isotope analysis, the dissolution of gypsum is the primary source of sulfate in samples from Hongfa mine, whereas sulfide oxidation contributed a large amount of sulfate to the mine water in Fenghuangshan mine. The dissolution of carbonates should be an important source of DIC in mine water and CO2 originating from organic mineralization might also have a certain contribution. This study elucidated the groundwater chemical evolution processes in high-sulfur coal-bearing strata and provided a foundation for further study of carbonates erosion and carbon emission during acidification of mine water.


Assuntos
Carbono/análise , Minas de Carvão , Monitoramento Ambiental/métodos , Água Subterrânea/química , Sulfatos/análise , Poluentes Químicos da Água/análise , Isótopos de Carbono/análise , China , Humanos , Isótopos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa